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Abstract. The existence of standing waves for a generalized Davey–Stewartson (GDS)
system was shown in Eden and Erbay [8] using an unconstrainted minimization problem.
Here, we consider the same problem but relax the condition on the parameters to χ+b < 0
or χ + b

m1
< 0. Our approach, in the spirit of Berestycki, Gallouët and Kavian [3] and

Cipolatti [6], is to use a constrained minimization problem and utilize Lions’ concentration-
compactness theorem [11]. When both methods apply we show that they give the same
minimizer and obtain a sharp bound for a Gagliardo–Nirenberg type inequality. As in [8],
this leads to a global existence result for small-mass solutions. Moreover, following an
argument in Eden, Erbay and Muslu [9] we show that when p > 2, the Lp-norms of
solutions to the Cauchy problem for a GDS system converge to zero as t→∞.

1. Introduction

The existence of standing waves for a GDS system was established in [8] by extending the
analysis done by Weinstein for the NLS equation [13] and by Papanicolaou et. al. for the
DS system [12]. In this note, our aim is to follow a different route and obtain the existence
of standing waves for a GDS system under less stringent conditions on the parameters. Our
interest lies in n = 2 case and the relevant work for the NLS was done by Weinstein [13]
and Berestycki, Gallouët and Kavian [3] where in the latter in addition to the existence
of ground states the existence of infinitely many solutions was also established. Later,
Cipolatti showed the existence of standing waves for the DS system when n = 2 or 3 [6].
Our aim is to modify these arguments so that they apply to a larger class of equations that
include the GDS system as a special case. Here, however, due to assumption (A3) we are
not treating the more general case considered in [8].
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The GDS system was derived by Babaoglu and Erbay [2] to model the propagation of
waves in a bulk medium composed of an elastic medium with couple stresses. In [1] it
was classified as elliptic–elliptic–elliptic(EEE), elliptic–hyperbolic–hyperbolic and elliptic–
elliptic–hyperbolic depending on the signs of the physical parameters. There some results
on the global existence and non-existence were obtained in the EEE case. This is also the
case we will consider here. In [7] the problem of existence of travelling waves for GDS
system was considered for the cases EEE and HEE. The necessary conditions for existence
were Pohozaev type identities. Later in [8] Pohozaev type identities played an important
role in restricting the parameters ω, χ and b in order to establish the existence of standing
waves. Pohozaev identities for solutions can be derived in different ways and here we choose
an alternative approach.

Our paper is organized as follows: in the second section we summarize the results ob-
tained in [8] leading to the existence of standing waves paying special attention on the
gap between the necessary conditions for existence and the sufficient conditions that are
actually imposed. Weinstein’s approach in [13] is to minimize a non-linear functional J
over H1(R2). Here care is needed in order to avoid the denominator of J being zero.
Sufficient conditions that are imposed in [8] serve this purpose. In contrast, in an alterna-
tive approach, when n = 2 the kinetic energy is minimized over a space where potential
energy is zero [3, 6]. The two types of energies have different behaviour under different
scaling transformations, these are summarized in the third section. Next we state our
main theorem on the existence of standing waves followed by a remark where we show that
whenever both methods apply they result in the same solutions. At the end of that section,
in harmony with the scaling transformations, we indicate alternative proofs for Pohozaev
type identities. In the forth section we prove a Gagliardo–Nirenberg type inequality and
establish global existence of solutions of the GDS system. Moreover we show that these
solutions tend to zero in Lp for p > 2 as t → ∞. We conclude with a comparison of
two methods by showing that the present method works for the GDS under the weaker
assumption χ+ b < 0 or χ+ b

m1
< 0.

Throughout this paper ‖ · ‖p will denote the Lp-norm for 1 6 p < ∞, whereas we will
write ‖ · ‖Wm,p for Sobolev space norms. Also (f, g) will denote

∫
fg over R2.

2. Review of previous results

The equations introduced in [2] can be written in the EEE case as a cubic NLS equation
with an additional non-local term in two space dimensions:

(1) ivt + ∆v = χ|v|2v + bK(|v|2)v,

where the non-local term is given in terms of Fourier transform variables ξ = (ξ1, ξ2) as

K̂(f)(ξ) = α(ξ)f̂(ξ) with

(2) α(ξ) =
λξ41 + (1 +m1 − 2n)ξ21ξ

2
2 +m2ξ

4
2

λξ41 + (m1 + λm2 − n2)ξ21ξ
2
2 +m1m2ξ42

.

The symbol α(ξ) then satisfies:
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(A1) α(ξ) is even and homogenous of degree zero,
(A2) 0 6 α(ξ) 6 αM for all ξ ∈ R2,
(A3) α1 := lim

s→∞
α(sξ1, ξ2) and α2 := lim

s→0+
α(sξ1, ξ2) exist,

where for the GDS system αM = max{1, 1/m1} [1] and α1 = 1, α2 = 1/m1. In this paper,
we will only assume that the symbol α(ξ) satisfies (A1)-(A3) hence our results will apply
to the GDS system. For v0 ∈ H1(R2) the existence and uniqueness of solutions to the
Cauchy problem for the GDS system was discussed in [1]. Moreover it was shown that the
Hamiltonian

(3) H(v) =

∫
R2

(
|ξ|2|v̂|2 +

1

2
(χ+ bα(ξ))

∣∣∣|̂v|2∣∣∣2) dξ
for the GDS system is conserved in the EEE case. It can easily be checked that the same
quantity is conserved for solutions of (1) under (A1) and (A2) [10].

Looking for a solitary wave in (1) of standing wave type, that is, v is of the form eiωtu(x)
with u ∈ H1(R2), one is led to the equation

(4) −∆u+ ωu = −χ|u|2u− bK(|u|2)u.
One of the key properties of the map K is that K : Lp(R2) → Lp(R2) is bounded

for all 1 < p < ∞ and ‖K(f)‖ 6 αM‖f‖22. This and further properties of K are given

in [8, Lemma 2.1]. Also we know that if u is a solution of (4), then u ∈
∞⋂
m=1

Wm,p for all

2 6 p < ∞ and there exist positive constants C, ν such that |u(x)| + |∇u(x)| 6 Ce−ν|x|

for all x ∈ R2 and lim
|x|→∞

K(|u|2)(x) = 0 [8, Lemma 2.2]. Here we remark that we can take

ω = 1 without loss of generality by defining ψ as u(x) =
√
ωψ(
√
ωx).

In [8, Theorem 2.1], the following necessary conditions were obtained for the solutions
of (4):

(5)

∫
R2

(|∇R|2 − ωR2)dx = 0,

∫
R2

(2ω + χR2 + bK(R2))R2dx = 0.

From (5) the two inequalities ω > 0 and χ‖R‖44 + b(K(R2), R2) < 0 followed as necessary
conditions on the solutions. To guarantee the latter inequality it was assumed that χ <
min{−bαM , 0}. This is no longer assumed in this paper and we relax it (in Theorem 1) to
χ+α1b < 0 or χ+α2b < 0. In [8] under the assumption χ < min{−bαM , 0}, the functional

J(f) =
−2‖f‖22‖∇f‖22

χ‖f‖44 + b(K(|f |2), |f |2)
was shown to have minimum on H1(R2), say R, which then satisfies (4) after a proper
normalization, hence the following Gagliardo–Nirenberg type inequality was obtained as a
corollary to [8, Theorem 2.1]:

(6) −χ‖f‖44 − b(K(|f |2), |f |2) 6 Copt‖f‖22‖∇f‖22,
where Copt = 2/‖R‖22.
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Now we will adapt the approach of Berestycki and Lions [4] and Berestycki, Gallouët
and Kavian [3] for the NLS equation and consider a constrained minimization problem.

3. Existence of Standing Waves

We note that u 6= 0 solves (4) if and only if u is a critical point of the Lagrangian given
by

Lω(u) =
1

2
‖∇u‖22 +

b

4
B(|u|2) +

χ

4
‖u‖44 +

ω

2
‖u‖22,

where B(f) :=

∫
α(ξ)|f̂(ξ)|2dξ =

∫
K(f)(x)f(x)dx.

Various parts of this Lagrangian are invariant under different scalings [8]: if

(7) ua,b(x) := sau(sbx), for some s > 0,

then we have

(8)
‖ua,b‖22 = s2a−2b‖u‖22, ‖∇ua,b‖22 = s2a‖∇u‖22,
‖ua,b‖44 = s4a−2b‖u‖44, B(|ua,b|2) = s4a−2bB(|u|2).

There is also a partial scaling that reveals the closer kinship between B(|u|2) and ‖u‖44.
Letting

(9) us(x) = us(x1, x2) = s1/4u(sx1, x2),

we get B(|us|2) =

∫
α(sξ1, ξ2)

∣∣∣(̂|u|2)(ξ1, ξ2)∣∣∣2 dξ. By (A3) and Lebesgue dominated con-

vergence theorem it follows that lim
s→∞

B(|us|2) = α1‖u‖44 and lim
s→0+

B(|us|2) = α2‖u‖44.
Using the standard terminology, as in [5, 6], we set

T (u) := ‖∇u‖22, V (u) := − b
4
B(|u|2)− χ

4
‖u‖44 −

ω

2
‖u‖22

so that Lω(u) = 1
2
T (u) − V (u) is to be minimized over H1(R2). To fix some notation,

define Σ0 := {u ∈ H1(R2) : u 6= 0, V (u) = 0} and I := inf
{

1
2
T (u) : u ∈ Σ0

}
. Then it can

be easily shown that if Σ0 6= ∅ and ω > 0 then I > 0.

Theorem 1. For χ+ α1b < 0 or χ+ α2b < 0, and ω > 0 the minimization problem

(10)
u ∈ Σ0,

T (u) = min{T (ψ) : ψ ∈ Σ0} = 2I,

has a positive solution. This solution satisfies 0 < Lω(u) 6 Lω(ψ) among all ψ ∈ H1(R2)
solving (4). Moreover, if u is properly scaled then it is a solution of (4).

Proof. First we will note that Σ0 is not empty. To establish this we will use one parameter
scalings introduced in (7) and (9). If χ + α1b < 0, for u ∈ H1(R2) defining us as in (9),
s→∞ implies (−bB(|us|2)− χ‖us‖44) −→ −(χ+ α1b)‖u‖44 > 0. Thus there exists s0 large
enough such that −bB(|us0|2) − χ‖us0‖44 > 0. Considering V (sus0), a quintic polynomial
in s, as the leading coefficient is positive there exists an s1 so that V (s1us0) = 0. Similarly
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if χ + α2b < 0 we send s → 0+ to have (−bB(|us|2) − χ‖us‖44) −→ −(χ + α2b)‖u‖44 > 0,
hence, we choose s0 close to 0 such that −bB(|us0|2)− χ‖us0‖44 > 0. Rest of the argument
follows as above.

Now, let (un) ⊂ Σ0 be a minimizing sequence such that ‖un‖2 = 1. Since T (un) is
bounded so is ‖un‖H1 , hence there exists u ∈ H1(R2) and a subsequence such that un ⇀ u
weakly in H1. In order to utilize the concentration compactness principle of Lions [11] we
consider

ρn(x) = |∇un(x)|2 + |un(x)|2,

where

∫
R2

ρn(x)dx = T (un) + ‖un‖22 → 2I + 1. There are three possibilities: vanishing,

dichotomy or concentration. Since concentration is the only possibility that occurs, there
exists (yn) ⊂ R2 such that for every ε > 0, there exists Rε > 1

ε
and∫

R2\BRε (yn)
ρn(x)dx 6 ε.

Replacing un(x) by ũn(x) = un(x − yn), ũn ⇀ ũ weakly in H1(R2) and by the imbedding
H1(R2) ↪→ Lp(R2) for 2 6 p < ∞, it follows that

∫
R2\BRε (0)

|ϕ̃n|2dx 6 εp/2 for 2 6 p < ∞.

Over BRε(0) the imbedding is compact and we can pass to the limit in V . Combining these
two, from V (ũn) = 0 it follows that V (ũ) = 0, i.e., ũ ∈ Σ0 with T (ϕ̃) 6 lim infn→∞ T (ϕ̃n) =
2I. Hence ũ is the desired minimum. Positivity of this minimum follows from [5, Lemma
8.1.12]. If u solves the minimization problem and ψ is any solution of (4) then from the
Pohozaev like identities in [8], we get that V (ψ) = 0, hence, Lω(u) 6 Lω(ψ).

Let u be a solution of (10). Then there is a Lagrange multiplier s such that −∆u =
s(−bK(|u|2)u − χ|u|2u − ωu), where s > 0 can be shown. From that we have a solution
of (4) under the scaling u0,−1/2 = u(x/

√
s). �

Remark 1. The minimum of T does not change if we replace Σ0 by {u ∈ H1(R2) : u 6=
0, V (u) > 0}. This is easy to see using one parameter scalings defined in (7),i.e., the fact
that if V (u) > 0 then there exists 0 < s 6 1 such that V (su) = 0.

Remark 2. Here we want to highlight that minimizers obtained from both methods coincide.

From Theorem 2.2 in [8], there exists R, which minimizes J =
−2‖f‖22‖∇f‖22
χ‖f‖44+bB(|f |2) over H1. Also

R satisfies Pohozaev type identities, i.e., T (R) = ω‖R‖22 and V (R) = 0. Noting that for any
u with V (u) = 0, J(u) = 1

ω
T (u) and hence 1

ω
T (R) 6 J(ψ) for all ψ ∈ H1. Restricting this

inequality to Σ0 we see that R minimizes T over Σ0. Conversely, let u ∈ Σ0 be a minimizer
of T and let ψ ∈ H1. If V (ψ) = 0, clearly J(u) 6 J(ψ). Otherwise consider V (sψ). Since
χ < min{−bαM , 0}, there exists s0 such that V (s0ψ) = 0. Note that J(ψ) = J(s0ψ), hence
we get that J(u) 6 J(s0ψ) = J(ψ) and so u is a minimizer of J over H1.

Here we want to outline how to establish Pohozaev type identities given in [8] in an
alternative way.

Proposition 1. If u ∈ H1 is a solution of (4) then

T (u) + ω‖u‖22 = −bB(|u|2)− χ‖u‖44, 2ω‖u‖22 = −bB(|u|2)− χ‖u‖44.
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Proof. Note that if u is a solution of (4) then it is a critical point of Lω. To show the
first identity, differentiate Lω along the one parameter family defined by s 7−→ u1,0. Since

Lω(u1,0) = s2 1
2
T (u)+s4 b

4
B(|u|2)+s4 χ

4
‖u‖44+s2 ω

2
‖u‖22, the result follows from dLω(u1,0)

ds

∣∣∣
s=1

=

0. For the second identity, differentiate Lω along s 7−→ u0,−1. Using the scalings given

in (8), Lω(u0,−1) = 1
2
T (u)−λ2V (u). Hence dLω(u0,−1)

ds

∣∣∣
s=1

= 0 yields the second identity. �

4. A Gagliardo–Nirenberg Type Inequality and its Consequences

One of the contributions of this paper is an alternative derivation of the Gagliardo–
Nirenberg type inequality using the constrained minimization problem described in the
previous section. When χ + α1b < 0 or χ + α2b < 0, in the unconstrained minimization
problem (see Section 2) the denominator of the functional J can become zero for u ∈
H1(R2), hence this method does not seem to be applicable. On the other hand, in the
constrained minimization problem the potential V (u) can be made to change sign through a
continuous one parameter family of functions passing from u. This fact plays an important
role in the derivation of the main result of this section.

Theorem 2. If χ+ α1b < 0 or χ+ α2b < 0 for any f ∈ H1(R2) we have

−
(
χ‖f‖44 + bB(|f |2)

)
6
ω

I
‖f‖22‖∇f‖22,

where I = 1
2
T (u) and u is a solution of (4).

Proof. Let f ∈ H1(R2) be arbitrary. First, if V (f) = 0 then we know that I 6 1
2
‖∇f‖22.

Hence we establish the result. Second, assume V (f) > 0. Since ω > 0 we have −χ‖f‖44 −
bB(|f |2) > 0 hence using scaling properties of V we can show the existence of an s such
that V (sf) = 0. Since J is invariant under these type of scalings the result follows from
the first case. Finally, if V (f) < 0 the result follows trivially when −χ‖f‖44− bB(|f |2) 6 0.
If V (f) < 0 but −χ‖f‖44 − bB(|f |2) > 0, considering V (sf) as a quintic polynomial as
before we can find s0 > 1 so that V (s0f) = 0 hence the first case applies. �

Remark 3. The connection between I and Copt, where Copt is given in (6), is established as
follows: For R obtained in [8, Theorem 2.2], we have 1

ω
T (R) 6 1

ω
T (u) for all u ∈ Σ0. Hence

1
ω
T (R) 6 1

ω
inf{T (u) : u ∈ Σ0} = 2I

ω
. Since R ∈ Σ0 from the Pohozaev type identities,

inf T (u) 6 T (R). Noting that T (R) = ω‖R‖22 we have ω
Copt

= ω
2
‖R‖22 = 1

2
T (R) = I.

Using this estimate we can find an upper bound on the initial condition and hence state
the following global existence result whose proof follows as in [8].

Corollary 1. For the Cauchy problem for the GDS system, if χ + b < 0 or χ + b
m1

< 0,

and ‖v0‖2 < ‖u‖2, where v0 ∈ H1(R2) is the initial amplitude and u is a solution of (4),
then the corresponding solution of the GDS system is global.

Also the asymptotic behaviour of solutions follows as a corollary:
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Corollary 2. Let v be a solution to the Cauchy problem for a GDS system and assume
that v remains in Σ := {v ∈ H1(R2) : (x2+y2)1/2, v ∈ L2(R2)}. If χ+b < 0 or χ+ b

m1
< 0,

and ‖v0‖2 < ‖u‖2, where u is a solution of (4), then

‖v(t)‖pp 6 C(1 + |t|)2−p,
for t > 0, p > 2 where C depends only on v0 and p.

Proof. In fact, ‖v0‖2 < ‖u‖2 implies that ‖∇v(t)‖22 6 MH(v0) for every t > 0, with

M =
(

1− ‖v0‖
2
2

‖u‖22

)−1
. Proceeding as in [9, Section 4] the result follows. �

In order to adapt the argument in [9] to the present situation one needs the validity
of the pseudoconformal invariance under (A1) and (A2). This is addressed in Eden and
Kuz [10] as well as the existence and uniqueness for the Cauchy problem for (4) under (A1)
and (A2).

5. Conclusion

The hypothesis (A3) is satisfied by the symbol of DS system with α1 = α2 = 1 and by
the symbol of the GDS system with α1 = 1 and α2 = 1

m1
. (A3) was not assumed in [8],

hence in a certain sense the result in [8] on existence is more general. However, (A3) plays
the key role in the scaling u ↔ us defined in (9) and in the relation between B(|u|2) and
‖u‖44. (A3) is our first attempt to obtain the partial scaling given in (9), there might be
other types of partial scalings that will also work.

Under the dilation u ↔ su, J is invariant whereas V (su) can be made equal to zero
when χ + α1b < 0 or χ + α2b < 0. Note that, although J is invariant under the scalings
u↔ ua,b defined in (7), it is no longer invariant under the partial scaling (9) u↔ us.

Comparing the condition χ < min{−bαM , 0} with χ + b < 0 or χ + b
m1

< 0 for the
GDS system, we see that, when b > 0, the first condition reduces to χ + bαM < 0. Since
αM > 1 and αM > 1

m1
this is a stronger assumption than χ+ b < 0 or χ+ b

m1
< 0. When

on the other hand b < 0, from the first condition we have χ < 0, whereas χ < −b or
χ < − b

m1
allows positive values for χ as well. When m1 = 1, hence αM = 1, there is still

improvement in χ+ b < 0 case.
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