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Nonlocal variational problems on polygons

Ihsan Topaloglu

(joint work with Marco Bonacini and Riccardo Cristoferi)

In [1] we consider the nonlocal isoperimetric problem

(1) inf
{
Eγ(E) : |E| = 1

}
,

among sets of finite perimeter E ⊂ Rd with given volume 1, where the energy
functional Eγ is defined as

Eγ(E) =

∫

∂∗E
ψ(νE) dH

d−1 + γ

∫

E

∫

E

dxdy

|x− y|α

for γ > 0, α ∈ (0, d). We are interested in surface energies determined by
crystalline surface tensions ψ, whose Wulff shapes (which are the corresponding
isoperimetric regions) are given by convex polyhedra.

This minimization problem was recently introduced by Rustum Choksi, Robin
Neumayer, and the author in [5] as an extension of the classical liquid drop model
of Gamow [7, 4] to the anisotropic setting. In the anisotropic liquid drop model
the competition is not only between the attractive and repulsive forces, but also
between the anisotropy in the surface energy and the isotropy of the Riesz-like
interaction energy. As in the isotropic case, the problem admits a minimizer when
γ is sufficiently small and fails to have minimizers for large values of γ. However
when ψ is smooth, and different than the Euclidean norm, its Wulff shape Wψ is
not a critical point of the energy Eγ(E) for any γ > 0, whereas in the isotropic
case the ball is the unique global minimizer for γ > 0 sufficiently small.

In contrast, in [1], we prove that, for a wide class of crystalline surface tensions,
where the Wulff shape of ψ enjoys particular symmetry properties, the correspond-
ing isoperimetric set Wψ remains as the minimizer of the nonlocal isoperimetric
problem for small values of γ > 0. To this end, let Pn, n ≥ 3, be the class of open,
convex polygons P ⊂ R2 with n sides L1, . . . , Ln and unit area |P| = 1, which
are reflection symmetric with respect to the bisectors of all angles. Then our first
main result states the minimality of polygons in Pn.
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Theorem 1. Let P ∈ Pn and let ψ be a surface energy density whose Wulff shape
is P. Then there exists γ̄ > 0, depending on P and α, such that for all γ < γ̄ the
polygon P is the unique (up to translations) solution to (1).

The proof of Theorem 1 follows by the combination of three main ingredients:
(a) the stability of the Wulff inequality; (b) the fact that any solution to (1) is an
ω-minimizer of the anisotropic perimeter and in turn, if γ is sufficiently small, it is
a polygon with sides parallel to those of P ; and (c) the following quadratic upper
bound for variations within the class C (P , ε) where the sides of competitors are
parallel to those of P and at distance at most ε.

Theorem 2 (Quadratic bound). Let P ∈ Pn. There exists ε0 > 0 and c0 > 0
(depending on the polygon P and on α) such that for every P̃ ∈ C (P , ε0) one has
the quadratic estimate

∣∣∣∣

∫

P

∫

P

dxdy

|x− y|α
−

∫

P̃

∫

P̃

dxdy

|x− y|α

∣∣∣∣ ≤ c0|P&P̃|2 .

For small γ, minimizers of Eγ are always obtained by perturbations of the Wulff
shape of the surface energy, whose sides are translated parallel to themselves.
In our result we exhibit an explicit class of Wulff shapes which remain global
minimizers for γ > 0. However, we cannot prove that polygons in this class are
exactly those with this global minimality property. It is an open problem to classify
the crystalline anisotropies whose Wulff shapes remain the global minimizers of
Eγ for γ > 0 sufficiently small which would require us to characterize the critical
points of the nonlocal energy with respect to the restricted class of variations.

This question naturally led us to study a class of nonlocal repulsive energies of
generalized Riesz-type

V(E) =

∫

E

∫

E
K(|x− y|) dxdy

on polygons, where the kernel K ≥ 0 is strictly decreasing and locally integrable.
The energy V (in any dimension) is uniquely maximized by the ball under vol-

ume constraint, as a consequence of Riesz’s rearrangement inequality. Moreover,
at least in the case of Riesz kernels, balls are characterized as the unique critical
points for the energy under volume constraint. This was proved in a series of
contributions (see e.g. [9]) via moving plane methods, and in full generality for
Riesz kernels in [8] via a continuous Steiner symmetrization argument. In [2], we
investigate the same two questions in a discrete setting, namely where the en-
ergy is evaluated on polygons with a fixed number of sides. In our first result we
show that among triangles and quadrilaterals the regular polygon is the unique
maximizer of the Riesz-type energy V .

Theorem 3. The equilateral triangle is the unique (up to rigid movements) max-
imizer of V in P3 under area constraint, and the square is the unique (up to rigid
movements) maximizer of V in P4 under area constraint.

The second main question that we address is whether the regular N -gon is
characterized by the stationarity conditions, as it is the case for the ball. In order
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to state precisely this result, we need to fix some notation. Given two points
P,Q ∈ R2, we denote by PQ = {tP + (1 − t)Q : t ∈ [0, 1]} the segment joining
P and Q. For N ≥ 3, let P ∈ PN be a polygon with N vertices P1, . . . , PN . For
notational convenience we also identify P0 = PN , PN+1 = P1. For i ∈ {1, . . . , N}
we let 'i be the length of the side PiPi+1, and Mi be the midpoint of the side
PiPi+1. Denoting by vP (x) =

∫
P K(|x − y|) dy the potential associated with the

polygon, we then consider the following two conditions:

(2)
1

'i

∫

PiPi+1

vP(x) dH
1(x)

=
1

'j

∫

PjPj+1

vP(x) dH
1(x) for all i, j ∈ {1, . . . , N},

which corresponds to the criticality condition for the energy V under an area
constraint, when sides are translated parallel to themselves, and

(3)

∫

PiMi

vP(x)|x −Mi| dH
1(x)

=

∫

Pi+1Mi

vP (x)|x −Mi| dH
1(x) for all i ∈ {1, . . . , N},

which corresponds to the criticality condition for the energy V under an area
constraint, when a side is rotated around its midpoint. Our second result is the
following.

Theorem 4. If P ∈ P3 obeys condition (3), then P is an equilateral triangle. If
P ∈ P4 obeys conditions (2) and (3), then P is a square.

The proof of this theorem uses a reflection argument inspired by [6] as well as an
argument based on a continuous symmetrization, inspired by an idea of Carrillo,
Hittmeir, Volzone, and Yao [3]. We prove that the conditions (2) and (3) enforce
the property of being equilateral, thus reducing the proof to the class of rhombi;
then in a second step we prove that the polygon has to be also equiangular, using
a reflection argument.
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An L1 method for convergence and metastability

Maria G. Westdickenberg

(joint work with Sarah Biesenbach, Felix Otto, Sebastian Scholtes,
and Richard Schubert)

We present a novel method developed for the 1-d Cahn Hilliard equation in [6]
and extended in [1]. In the first part of the talk, we consider the one-dimensional,
fourth-order Cahn–Hilliard equation

ut = −
(
uxx −G′(u)

)
xx

t > 0, x ∈ R,(1)

where G is a double-well potential with nondegenerate absolute minima at ±1; a
canonical choice is G(u) = 1

4 (1− u2)2.
The Cahn–Hilliard equation has a gradient flow structure with energy and dis-

sipation given by

E(u) =

∫
1

2
u2
x +G(u) dx, D :=

∫ ((
G′(u)− uxx

)
x

)2
dx.(2)

The so-called “centered kink” v minimizes the energy subject to ±1 boundary
conditions at ±∞ and is normalized so that v(0) = 0. We call its energy e∗ :=
E(v). For any a ∈ R, the kink va := v(·− a) is also an energy minimizer, so that
there is a whole continuum of minima.

We are interested in optimal convergence rates for initial data that is an order-
one L1 perturbation of a kink. It turns out that it is useful to work in terms of
the L2-closest kink vc(x) = v(x− c), the shift c, and the associated L1 distance

V :=

∫
|u− vc| dx.

Further defining the energy-gap E := E(u) − E(v), we are able to establish a
Nash-type estimate

E ! D
1
3 (V + 1)

4
3 ,

from which an elementary ODE argument yields

E !
V̄ 2 + 1

t
1
2

for t ∈ [0, T ], where V̄ := sup
t≤T

V.(3)

Hence it remains “only” to deduce that V remains bounded. For this, we use a du-
ality argument inspired by [5] together with decay estimates for the linear equation
on a domain with a (subcritical) moving boundary and a buckling argument.


