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Abstract. We investigate which nonlocal-interaction energies have a ground state (global min-
imizer). We consider this question over the space of probability measures and establish a sharp
condition for the existence of ground states. We show that this condition is closely related to the
notion of stability (i.e. H-stability) of pairwise interaction potentials. Our approach uses the direct
method of the calculus of variations.

1. Introduction

We investigate the existence of ground states (global minimizers) of nonlocal-interaction energies

(1.1) E(µ) :=

∫
RN

∫
RN

w(x− y) dµ(x)dµ(y)

considered over the space of probability measures P(RN ). Nonlocal-interaction energies arise in
descriptions of systems of interacting particles, as well as their continuum limits. They are im-
portant to statistical mechanics [24, 35, 37], models of collective behavior of many-agent systems
[6, 33], granular media [5, 18, 39], self-assembly of nanoparticles [26, 27], crystallization [1, 34, 38],
and molecular dynamics simulations of matter [25].

Whether the energy dissipated by a system admits a global minimizer has important consequences
on the behavior of the system. Continuum systems governed by the energy which has a ground
state typically exhibit well defined dense clumps, while the systems with no global minimizers tend
to disperse indefinitely.

The interaction potential w depends on the system considered. In most cases it depends only on
the distance between particles/agents. That is the interaction potential w is radially symmetric:
w(x) = W (|x|) for some W : [0,∞) → (−∞,∞]. Many potentials considered in the applications
are repulsive at short distances (W ′(r) < 0 for r small) and attractive at large distances (W ′(r) > 0
for r large). Systems with finitely many particles governed by short-range-repulsive, long-range-
attractive interaction potentials form well defined structures (crystals are an example [38]). The
relevance of our result is to the behavior of these systems as the number of particles grows to
infinity. Systems which have a global minimizer over the space of measures form well defined states
whose density grows as the number of particles increases, while the systems with no ground states
typically have bounded density and increase in size indefinitely.

This mirrors the considerations in classical statistical mechanics when thermodynamic limit
of particle systems is considered [35]. Here we obtain mathematical results that highlight the
connection. Namely, in Theorem 3.2 (combined with Proposition 4.1), we establish that the sharp
condition for the existence of ground states of (1.1) is closely related to the notion of stability
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(H-stability) of interacting potentials [24, 35]. More precisely we show that systems admitting a
minimizer of (1.1) are (almost) precisely those for which the interaction potential is not H-stable,
that is those for which the potential is catastrophic.

In recent years significant interest in nonlocal-interaction energies arose from studies of dynamical
models. For semi-convex interaction potentials w a number of systems governed by the energy E
can be interpreted as a gradient flow of the energy with respect to the Wasserstein metric and
satisfy the nonlocal-interaction equation

(1.2)
∂µ

∂t
= 2 div (µ(∇w ∗ µ)) .

Applications of this equation include models of collective behavior in biology [6, 33], granular media
[5, 18, 39], and self-assembly of nanoparticles [26, 27].

While purely attractive potentials lead to finite-time or infinite time blow up [7] the attractive-
repulsive potentials often generate finite-sized, confined aggregations [23, 29, 31]. The study of
the nonlocal-interaction equation (1.2) in terms of well-posedness, finite or infinite time blow-up,
and long-time behavior has attracted the interest of many research groups in the recent years
[3, 4, 7, 8, 9, 10, 16, 17, 21, 23, 28, 29, 30]. The energy (1.1) plays an important role in these
studies as it governs the dynamics and as its (local) minima describe the long-time asymptotics of
solutions.

It has been observed that even for quite simple repulsive–attractive potentials the ground states
are sensitive to the precise form of the potential and can exhibit a wide variety of patterns [28, 29,
41]. In [2] Balagué, Carrillo, Laurent, and Raoul obtain conditions for the dimensionality of the
support of local minimizers of (1.1) in terms of the repulsive strength of the potential w at the
origin. Properties of steady states for a special class of potentials which blow up approximately like
the Newtonian potential at the origin have also been studied [9, 15, 22, 23]. Particularly relevant to
our study are the results obtained by Choksi, Fetecau and one of the authors [19] on the existence
of minimizers of interaction energies in a certain form. There the authors consider potentials
of the power-law form, w(x) := |x|a/a − |x|r/r, for −N < r < a, and prove the existence of
minimizers in the class of probability measures when the power of repulsion r is positive. When the
interaction potential has a singularity at the origin, i.e., for r < 0, on the other hand, they establish
the existence of minimizers of the interaction energy in a restrictive class of uniformly bounded,
radially symmetric L1-densities satisfying a given mass constraint. Carrillo, Chipot and Huang [14]
also consider the minimization of nonlocal-interaction energies defined via power-law potentials and
prove the existence of a global minimizer by using a discrete to continuum approach. The ground
states and their relevance to statistical mechanics were also considered in periodic setting (and on
bounded sets) by Süto [37].

1.1. Outline. In Theorems 3.1 and 3.2 we establish criteria for the existence of minimizers of a
very broad class of potentials. We employ the direct method of the calculus of variations. In Lemma
2.2 we establish the weak lower-semicontinuity of the energy with respect to weak convergence of
measures. When the potential W grows unbounded at infinity (case treated in Theorem 3.1) this
provides enough confinement for a minimizing sequence to ensure the existence of minimizers. If W
asymptotes to a finite value (case treated in Theorem 3.2) then there is a delicate interplay between
repulsion at some lengths (in most applications short lengths) and attraction at other length scales
(typically long) which establishes whether the repulsion wins and a minimizing sequence spreads
out indefinitely and “vanishes” or the minimizing sequence is compact and has a limit. We establish
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a simple, sharp condition, (HE) on the energy that characterizes whether a ground state exists. To
establish compactness of a minimizing sequence we use Lions’ concentration compactness lemma.

While the conditions (H1) and (H2) are easy-to-check conditions on the potential W itself, the
condition (HE) is a condition on the energy and it is not always easy to verify. Due to the above
connection with statistical mechanics the conditions on H-stability (or the lack thereof) can be
used to verify if (HE) is satisfied for a particular potential. We list such conditions in Section 4.
However only few general conditions are available. It is an important open problem to establish a
more complete characterization of potentials W which satisfy (HE).

We finally remark that as this manuscript was being completed we learned that Cañizo, Car-
rillo, and Patacchini [12] independently and concurrently obtained very similar conditions for the
existence of minimizers, which they also show to be compactly supported. The proofs however are
quite different.

2. Hypotheses and Preliminaries

The interaction potentials we consider are radially symmetric, that is, w(x) = W (|x|) for some
function W : [0,∞)→ R ∪ {∞}, and they satisfy the following basic properties:

(H1) W is lower-semicontinuous.

(H2) The function w(x) is locally integrable on RN .

Beyond the basic assumptions above, the behavior of the tail of W will play an important role.
We consider potentials which have a limit at infinity. If the limit is finite we can add a constant
to the potential, which does not affect the existence of minimizers, and assume that the limit is
zero. If the limit is infinite the proof of existence of minimizers is simpler, while if the limit is
finite an additional condition is needed. Thus we split the condition on behavior at infinity into
two conditions:

(H3a) W (r)→∞ as r →∞.

(H3b) W (r)→ 0 as r →∞.

Remark 2.1. By the assumptions (H1) and (H3a) or (H3b) the interaction potential W is bounded
from below. Hence

(2.1) CW := inf
r∈(0,∞)

W (r) > −∞.

If (H3a) holds, by adding −CW to W from now on we assume that W (r) > 0 for all r ∈ (0,∞)

As noted in the introduction the assumptions (H1), (H2) with (H3a) or (H3b) allow us to
handle a quite general class of interaction potentials w. Figure 1 illustrates a set of simple examples
of smooth potential profiles W that satisfy these assumptions.

In order to establish the existence of ground states of E, for interaction potentials w satisfying
(H1), (H2) and (H3b), the following assumption on the interaction energy E is needed:

(HE) There exists a measure µ̄ ∈ P(RN ) such that E(µ̄) 6 0.

We establish that the conditions (H1), (H2) and (H3a) or (H3b) imply the lower-semicontinuity
of the energy with respect to weak convergence of measures. We recall that a sequence of probability
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(a) Interaction potentials satisfying (H1), (H2), and (H3a)

 x¤

W H x¤L

 x¤

W H x¤L

(b) Interaction potentials satisfying (H1), (H2), and (H3b)

Figure 1. Generic examples of W (|x|).

measures µn converges weakly to measure µ, and we write µn ⇀ µ, if for every bounded continuous
function φ ∈ Cb(RN ,R) ∫

φdµn →
∫
φdµ as n→∞.

Lemma 2.2 (Lower-semicontinuity of the energy). Assume W : [0,∞) → (−∞,∞] is a lower-
semicontinuous function bounded from below. Then the energy E : P(Rn) → (−∞,∞] defined in
(1.1) is weakly lower-semicontinuous with respect to weak convergence of measures.

Proof. Let µn be a sequence of probability measures such that µn ⇀ µ as n→∞. Then µn×µn ⇀
µ× µ in the set of probability measures on RN × RN . If w is continuous and bounded∫

RN

∫
RN

w(x− y) dµn(x)dµn(y) −→
∫
RN

∫
RN

w(x− y) dµ(x)dµ(y) as n→∞.

So, in fact, the energy is continuous with respect to weak convergence. On the other hand, if w
is lower-semicontinuous and w is bounded from below then the weak lower-semicontinuity of the
energy follows from the Portmanteau Theorem [40, Theorem 1.3.4]. �

We remark that the assumption on boundedness from below is needed since if, for example,
W (r) = −r then for µn = (1− 1

n)δ0 + 1
nδn the energy is E(µn) = −1 for all n ∈ N, while µn ⇀ δ0

which has energy E(δ0) = 0.

Finally, we state Lions’ concentration compactness lemma for probability measures [32], [36,
Section 4.3]. We use this lemma to verify that an energy-minimizing sequence is precompact in the
sense of weak convergence of measures.

Lemma 2.3 (Concentration-compactness lemma for measures). Let {µn}n∈N be a sequence of
probability measures on RN . Then there exists a subsequence {µnk

}k∈N satisfying one of the three
following possibilities:
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(i) (tightness up to translation) There exists a sequence {yk}k∈N ⊂ RN such that for all ε > 0
there exists R > 0 with the property that∫

BR(yk)
dµnk

(x) > 1− ε for all k.

(ii) (vanishing) lim
k→∞

sup
y∈RN

∫
BR(y)

dµnk
(x) = 0, for all R > 0;

(iii) (dichotomy) There exists α ∈ (0, 1) such that for all ε > 0, there exist a number R > 0
and a sequence {xk}k∈N ⊂ RN with the following property:

Given any R′ > R there are nonnegative measures µ1
k and µ2

k such that

0 6 µ1
k + µ2

k 6 µnk
,

supp(µ1
k) ⊂ BR(xk), supp(µ2

k) ⊂ RN \BR′(xk) ,

lim sup
k→∞

(∣∣∣∣α− ∫
RN

dµ1
k(x)

∣∣∣∣+

∣∣∣∣(1− α)−
∫
RN

dµ2
k(x)

∣∣∣∣) 6 ε.
3. Existence of Minimizers

In this section we prove the existence of a global minimizer of E. We use the direct method of
the calculus of variations and utilize Lemma 2.3 to eliminate the “vanishing” and “dichotomy” of
an energy-minimizing sequence. The techniques in our proofs, though, depends on the behavior
of the interaction potential at infinity. Thus we prove two existence theorems: one for potentials
satisfying (H3a) and another one for those satisfying (H3b).

Theorem 3.1. Suppose W satisfies the assumptions (H1), (H2) and (H3a). Then the energy
(1.1) admits a global minimizer in P(RN ).

Proof. Let {µn}n∈N be a minimizing sequence, that is, limn→∞E(µn) = infµ∈P(RN )E(µ).

Suppose {µk}k∈N has a subsequence which “vanishes”. Since that subsequence is also a minimiz-
ing sequence we can assume that {µk}k∈N vanishes. Then for any ε > 0 and for any R > 0 there
exists K ∈ N such that for all k > K and for all x ∈ RN

µk(RN \BR(x)) > 1− ε.

This implies that for k > K,∫∫
|x−y|>R

dµk(x)dµk(y) =

∫
RN

(∫
RN\BR(x)

dµk(y)

)
dµk(x) > 1− ε.

Given M ∈ R, by condition (H3a) there exists R > 0 such that for all r > R, W (r) >M . Consider
ε ∈ (0, 1

2) and K corresponding to ε and R. Since W > 0 by Remark 2.1,

E(µk) =

∫∫
|x−y|<R

W (|x− y|) dµk(x)dµk(y) +

∫∫
|x−y|>R

W (|x− y|) dµk(x)dµk(y)

>
∫∫
|x−y|>R

W (|x− y|) dµk(x)dµk(y)

> (1− ε)M
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for all k > K. Letting M → ∞ implies E(µk) → ∞. This contradicts the fact that µk is a
subsequence of a minimizing sequence of E. Thus, “vanishing” does not occur.

Next we show that “dichotomy” is also not an option for a minimizing sequence. Suppose, that
“dichotomy” occurs. As before we can assume that the subsequence along which dichotomy occurs
is the whole sequence. Let ε > 0 be fixed, and let R, the sequence {xk}k∈N and measures

µ1
k + µ2

k 6 µk.

be as defined in Lemma 2.3(ii). For any R′ > R , using Remark 2.1, we obtain

lim inf
k→∞

E(µnk
) > lim inf

k→∞

∫
BR(xnk

)

∫
Bc

R′ (xnk
)
W (|x− y|) dµ2

k(x)dµ1
k(y)

> inf
r>R′−R

W (r) (α− ε)(1− α− ε),

where Bc
R′(xnk

) simply denotes RN \BR′(xnk
).

By (H3a), letting R′ →∞ yields that

lim inf
k→∞

E(µnk
) >∞,

which contradicts the fact that µk is an energy minimizing sequence.
Therefore “tightness up to translation” is the only possibility. Hence there exists yk ∈ RN such

that for all ε > 0 there exists R > 0 with the property that∫
B(yk,R)

dµnk
(x) > 1− ε for all k.

Let
µ̃nk

:= µnk
(·+ yk).

Then the sequence of probability measures {µ̃nk
}k∈N is tight. Since the interaction energy is

translation invariant we have that
E(µ̃nk

) = E(µnk
).

Hence, {µ̃nk
}k∈N is also an energy-minimizing sequence. By the Prokhorov’s theorem (cf. [11,

Theorem 4.1]) there exists a further subsequence of {µ̃nk
}k∈N which we still index by k, and a

measure µ0 ∈ P(RN ) such that
µ̃nk

⇀µ0

in P(RN ) as k →∞.

Since the energy in lower-semicontinuous with respect to weak convergence of measures, by
Lemma 2.2, the measure µ0 is a minimizer of E. �

The second existence theorem involves interaction potentials which vanish at infinity.

Theorem 3.2. Suppose W satisfies the assumptions (H1), (H2) and (H3b). Then the energy E,
given by (1.1), has a global minimizer in P(RN ) if and only if it satisfies the condition (HE).

Proof. Let us assume that E satisfies condition (HE). As before, our proof relies on the direct
method of the calculus variations for which we need to establish precompactness of a minimizing
sequence.

Let {µn}n∈N be a minimizing sequence and let

I := inf
µ∈P(RN )

E(µ).
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Condition (HE) implies that I 6 0. If I = 0 then by assumption (HE) there exists µ̄ with
E(µ̄) = 0, which is the desired minimizer. Thus, we focus on case that I < 0. Hence there exists µ̄
for which E(µ̄) < 0. Also note that by Remark 2.1, I > −∞.

Suppose the subsequence {µnk
}k∈N of the minimizing sequence {µn}n∈N “vanishes”. Since that

subsequence is also a minimizing sequence we can assume that {µk}k∈N vanishes. That is, for any
R > 0

(3.1) lim
k→∞

sup
x∈RN

∫
BR(x)

dµk(y) = 0.

Let

W (R) = inf
r>R

W (r).

Since W (r)→ 0 as r →∞, W (r)→ 0 as r →∞ and W (r) 6 0 for all r > 0. Then we have that

E(µk) =

∫∫
|x−y|>R

W (|x− y|) dµk(x)dµk(y) +

∫∫
|x−y|6R

W (|x− y|) dµk(x)dµk(y)

>W (R) + CW

∫∫
|x−y|6R

dµk(x)dµk(y)

= W (R) + CW

∫
RN

(∫
BR(x)

dµk(y)

)
dµk(x).

Vanishing of the measures, (3.1), implies that lim infk→∞E(µk) >W (R) for all R > 0. Taking the
limit as R→∞ gives

lim inf
k→∞

E(µk) > 0.

This contradicts the fact that the infimum of the energy, namely I, is negative. Therefore “vanish-
ing” in Lemma 2.3 does not occur.

Suppose the dichotomy occurs. Let α ∈ (0, 1) and R > 0 be as in Lemma 2.3 and CW be the
constant defined in (2.1). Let ε > 0 be such that

(3.2) ε <
|I|

64|CW |
min

{
1

α
− 1,

1

1− α
− 1

}
and let R′ be such that

(3.3) |W (R′ −R)| = | inf
r>R′−R

W (r)| < |I|
32

min

{
1

α
− 1,

1

1− α
− 1

}
.

As in the proof of Theorem 3.1, we can assume that dichotomy occurs along the whole sequence.
Let µ1

k and µ2
k be measures described in Lemma 2.3. Let νk = µk − (µ1

k + µ2
k). Note that νk is a

nonnegative measure with |νk| < ε, where |νk| = νk(RN ).
Let B[·, ·] denote the symmetric bilinear form

B[µ, ν] := 2

∫
RN

∫
RN

W (|x− y|) dµ(x)dν(y).

By the definition of energy

E(µk) = E(µ1
k) + E(µ2

k) +B(µ1
k, µ

2
k) +B(µ1

k + µ2
k, νk) + E(νk)

> E(µ1
k) + E(µ2

k)− |W (R′ −R)| − 2|CW |ε
(3.4)
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where we used that the supports of µ1
k and µ2

k are at least R′ − R apart. We can also assume,

without loss of generality, that E(µk) <
1
2I for all k. Let αk = |µ1

k|, βk = |µ2
k|.

Let us first consider the case that 1
αk
E(µ1

k) 6
1
βk
E(µ2

k). Note that the energy has the following

scaling property:

E(cσ) = c2E(σ)

for any constant c > 0 and measure σ. Our goal is to show that for some λ > 0, for all large enough
k, E( 1

αk
µ1
k) < E(µk)− λ|I| which contradicts the fact that µk is a minimizing sequence.

Let us consider first the subcase that E(µ2
k) > 0 along a subsequence. By relabeling we can

assume that the subsequence is the whole sequence. From (3.2), (3.3), and (3.4) it follows that

(3.5)
1

αk
E(µ1

k) <
I

4

for all k. Using the estimates again, we obtain

E(µk)− E
(

1

αk
µ1
k

)
(3.4)

>

(
1− 1

α2
k

)
E
(
µ1
k

)
− |W (R′ −R)| − 2|CW |ε

(3.5)

>

(
1

αk
− 1

)
|I|
4
− |W (R′ −R)| − 2|CW |ε

(3.2),(3.3)

>

(
1

α
− 1

)
|I|
16
.

Thus µk is not a minimizing sequence. Contradiction.
Let us now consider the subcase E(µ2

k) 6 0 for all k. Using (3.4) and βk
αk
E(µ1

k) 6 E(µ2
k) we

obtain
I

2
> E(µk) >

(
1 +

βk
αk

)
E(µ1

k)− |W (R′ −R)| − 2|CW |ε.

From (3.2) and (3.3) follows that for all k

1

αk
E(µ1

k) 6
I

8
.

Combining with above inequalities gives

E(µk)− E
(

1

αk
µ1
k

)
>

(
1 +

βk
αk
− 1

α2
k

)
E(µ1

k)− |W (R′ −R)| − 2|CW |ε

>

(
1

αk
− αk − βk

)
|I|
8
−
(

1

α
− 1

)(
|I|
32

+
|I|
32

)
>
|I|
32

(
1

α
− 1

)
for k large enough. This contradicts the assumption that µk is a minimizing sequence.

The case 1
αk
E(µ1

k) >
1
βk
E(µ2

k) is analogous. In conclusion the dichotomy does not occur. There-

fore “tightness up to translation” is the only possibility. As in the proof of Theorem 3.1, we can
translate measures µnk

to obtain a tight, energy-minimizing sequence µ̃nk
.

By Prokhorov’s theorem, there exists a further subsequence of {µ̃nk
}k∈N, still indexed by k, such

that

µnk
⇀ µ0 as k →∞
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for some measure µ0 ∈ P(RN ) in P(RN ) as k → ∞. Therefore, by lower-semicontinuity of the
energy, µ0 is a minimizer of E in the class P(RN ).

We now show the necessity of condition (HE). Assume that E(µ) > 0 for all µ ∈ P(RN ). To
show that the energy E does not have a minimizer consider a sequence of measures which “vanishes”
in the sense of Lemma 2.3(ii). Let

ρ(x) =
1

ωN
χB1(0)(x),

where ωN denotes the volume of the unit ball in RN and χBR(0) denotes the characteristic function
of BR(0), the ball of radius R centered at the origin. Consider the sequence

ρn(x) =
1

nN
ρ
(x
n

)
for n > 1. Note that ρn are in P(RN ). We estimate

0 < E(ρn) =
1

ω2
Nn

2N

∫
Bn(0)

∫
Bn(0)

W (|x− y|) dxdy

6
1

ω2
Nn

2N

∫
Bn(0)

(∫
Bn(y)

|W (|x|)| dx

)
dy

6
1

ωNnN

(∫
BR(0)

|W (|x|)| dx+

∫
B2n(0)\BR(0)

|W (|x|)| dx

)

6
C(R)

ωNnN
+

2N

ωN
sup
r>R
|W (r)|.

Since supr>R |W (r)| → 0 as R→∞, for any ε > 0 we can choose R so that 2N

ωN
supr>R |W (r)| < ε

2 .

We can then choose n large enough for C(R)
ωNnN < ε

2 to hold. Therefore limn→∞E(ρn) = 0, that is,

infµ∈P(RN )E(µ) = 0. However, since E(·) is positive for any measure in P(RN ) the energy does
not have a minimizer. �

4. Stability and Condition (HE)

The interaction energies of the form (1.1) have been an important object of study in statistical
mechanics. For a system of interacting particles to have a macroscopic thermodynamic behavior
it is needed that it does not accumulate mass on bounded regions as the number of particles goes
to infinity. Ruelle called such potentials stable (a.k.a. H-stable). More precisely, a potential
W : [0,∞) → (−∞,∞] is defined to be stable if there exists B ∈ R such that for all n and for all
sets of n distinct points {x1, . . . , xn} in RN

(4.1)
1

n2

∑
16i<j6n

w(xi − xj) > −
1

n
B.

We show that for a large class of pairwise interaction potentials the stability is equivalent with
nonnegativity of energies. Our result is a continuum analogue of a part of [35, Lemma 3.2.3].

Proposition 4.1 (Stability conditions). Let W : [0,∞)→ R be an upper-semicontinuous function
such that W is bounded from above or there exists R such that W is nondecreasing on [R,∞). Then
the conditions
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(S1) w is a stable potential as defined by (4.1),
(S2) for any probability measure µ ∈ P(RN ), E(µ) > 0

are equivalent.

Note that all potentials considered in the proposition are finite at 0. We expect that the condition
can be extended to a class of potentials which converge to infinity at zero. Doing so is an open
problem. We also note that the condition (S2) is not exactly the complement of (HE), as the
nonnegative potentials whose minimum is zero satisfy both conditions. Such potentials indeed
exist: for example consider any smooth nonnegative W such that W (0) = 0. Then the associated
energy is nonnegative and E(δ0) = 0 so any singleton is an energy minimizer. Note that E satisfies
both (HE) and stability. To further remark on connections with statistical mechanics we note that
such potentials W are not super-stable, but are tempered if W decays at infinity (both notions are
defined in [35, Chapter 3]).

Proof. To show that (S2) implies (S1) consider µ = 1
n

∑n
i=1 δxi . Then from E(µ) > 0 it follows

that 1
n2

∑
16i<j6nw(xi − xj) > − 1

2nW (0) so (S1) holds with B = 1
2W (0).

We now turn to showing that (S1) implies (S2). Let us recall the definition of Lévy–Prokhorov
metric, which metrizes the weak convergence of probability measures: Given probability measures
ν and σ

dLP (ν, σ) = inf{ε > 0 : (∀A− Borel) ν(A) 6 σ(A+ ε) + ε and σ(A) 6 ν(A+ ε) + ε}

where A+ ε = {x : d(x,A) < ε}.
For a given measure µ, we first show that it can be approximated in the Lévy–Prokhorov metric

by an empirical measure of a finite set with arbitrarily many points. That is, we show that for any
ε > 0 and any n0 there exists n > n0 and a set of distinct points X = {x1, . . . , xn} such that the
corresponding empirical measure µX = 1

n

∑n
j=1 δxj satisfies dLP (µX , µ) < ε.

Let ε > 0. We can assume that ε < 1
2 . There exists R > 0 such that for QR = [−R,R]N ,

µX(RN\QR) < ε
2 . For integer l such that

√
N 2R

l < ε divide QR into lN disjoint cubes Qi, i =

1, . . . , lN with sides of length 2R/l. While cubes have the same interiors, they are not required
to be identical, namely some may contain different parts of their boundaries, as needed to make
them disjoint. Note that the diameter of each cube,

√
N 2R

l , is less than ε. Let n > n0 be such

that lN

n < ε
2 . Let p = 1

n . For i = 1, . . . , lN let pi = µ(Qi), ni = bpinc, and qi = nip. Note that

0 6 pi − qi 6 p and thus sq =
∑

i qi >
∑

i pi − lNp > 1 − ε
2 . In each cube Qi place ni distinct

points and let X̃ be the set of all such points. Note that ñ =
∑

i ni = sqn > (1 − ε)n. Let X̂ be

an arbitrary set of n − ñ distinct points in Q2R\QR. Let X = X̃ ∪ X̂. Note that X is a set of n
distinct points. Then for any Borel set A

µ(A) 6
∑

i : µ(A∩Qi)>0

µ(Qi) +
ε

2
6

∑
i : µ(A∩Qi)>0

(µX(Qi) + p) +
ε

2
6 µX(A+ ε) + ε.

Similarly

µX(A) 6 µ(A+ ε) + ε.

Therefore dLP (µ, µX) 6 ε.
Consequently there exists a sequence of sets Xm with n(m) points satisfying n(m) → ∞ as

m → ∞ for which the empirical measure µm = µXm converges weakly µm ⇀ µ as m → ∞. By
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assumption (S1) ∫∫
x 6=y

W (x− y)dµm(x)dµXm(y) > − 1

n(m)
B.

Let us first consider the case that W is an upper-semicontinuous function bounded from above. It
follows from Lemma 2.2 that the energy E is an upper-semicontinuous functional. Therefore

E(µ) > lim sup
m→∞

E(µm) > lim sup
m→∞

− 1

n(m)
(B −W (0)) = 0

as desired.
If W is an upper-semicontinuous function such that there exists R such that W is nondecreasing

on [R,∞) we first note that we can assume thatW (r)→∞ as r →∞, since otherwiseW is bounded
from above which is covered by the case above. If µ is a compactly supported probability measure
then there exists L such that for all m, suppµm ⊆ [−L,L]N . Since W is upper-semicontinuous it
is bounded from above on compact sets and thus upper-semicontinuity of the energy holds. That
is E(µ) > lim supm→∞E(µm) > 0 as before.

If µ is not compactly supported it suffices to show that there exists a compactly supported
measure µ̃ such that E(µ) > E(µ̃), since by above we know that E(µ̃) > 0. Note that since
E(1

2(δx+δ0)) > 0, W (|x|) > −W (0). Therefore W is bounded from below by −W (0) and W (0) > 0.

Since W (r) → ∞ as r → ∞ there exists R1 > R such that W (R1) > max{1,maxr6R1 W (r)}
and m1 = µ(BR1(0)) > 7

8 . Let R2 be such that W (R2) > 2W (R1), and define the constants

m2 = µ(BR2(0)\BR1(0)) and m3 = µ(RN\BR2(0)). Note that m1 + m2 + m3 = 1. Consider the
mapping

P (x) =

{
x if |x| 6 R2

0 if |x| > R2.

Let µ̃ = P]µ. Estimating the interaction of particles between the regions provides:

E(µ̃) 6 E(µ) + 2W (0)m2
3 + 2(W (R2) +W (0))m2m3 − 2(W (R2)−W (R1))m1m3

6 E(µ) +W (R2)m3(m3 + 4m2 −m1) < E(µ).

�

As we showed in Theorem 3.2 the property (HE) is necessary and sufficient for the existence
of ground states when E is defined via an interaction potential satisfying (H1), (H2) and (H3b).
The property (HE) is posed as a condition directly on the energy E, and can be difficult to verify
for a given W . It is then natural to ask what conditions the interaction potential W needs to satisfy
so that the energy E has the property (HE). In other words, how can one characterize interaction
potentials w for which E admits a global minimizer?

We do not address that question in detail, but just comment on the partial results established in
the context of H-stability of statistical mechanics and how they apply to the minimization of the
nonlocal-interaction energy.

Perhaps the first condition which appeared in the statistical mechanics literature states that
absolutely integrable potentials which integrate to a negative number over the ambient space are
not stable (cf. [20, Theorem 2] or [35, Proposition 3.2.4]). In our language these results translate
to the following proposition.
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Proposition 4.2. Consider an interaction potential w(x) = W (|x|) where W satisfies the hypothe-
ses (H1), (H2) and (H3b). If w is absolutely integrable on RN and∫

RN

W (|x|) dx < 0,

then the energy E defined by (1.1) satisfies the condition (HE).

Proof. By rescaling, we can assume that
∫
RN W (|x|) dx = −1. Let M =

∫
RN |W (x)| dx. Let R be

such that
∫
BR(0)W (|x|) dx < −3

4 and
∫
BR(0)c |W (|x|)| dx < 1

4 . Consider n large, to be set later,

and let ρ(x) := 1
ωN (nR)N

χBnR(0)(x), i.e., the scaled characteristic function of the ball of radius nR.

Using the fact that BR(0) ⊂ BnR(y) for |y| < (n− 1)R, we obtain

ω2
N (nR)2N E(ρ) =

∫
BnR(0)

∫
BnR(0)

W (|x− y|) dxdy

=

∫
BnR(0)

(∫
BnR(y)

W (|x|) dx

)
dy

6
∫
B(n−1)R(0)

(∫
BR(0)

W (|x|) dx+
1

4

)
dy +

∫
BnR(0)\B(n−1)R(0)

M dy

6− 1

2
(n− 1)NRNωN +NωNn

N−1RNM < 0

if n is large enough. This shows that the energy E satisfies (HE). �

An alternative condition for instability of interaction potentials is given in [13, Section II]. This
condition, which we state and prove in the following proposition, extends the result of Proposition
4.2 to interaction potentials which are not necessarily absolutely integrable.

Proposition 4.3. Suppose the interaction potential W satisfies the hypotheses (H1), (H2) and
(H3b). If there exists p > 0 for which

(4.2)

∫
RN

W (|x|) e−p2|x|2 dx < 0,

then the energy E defined by (1.1) satisfies the condition (HE).

Proof. Let p > 0 be given such that the inequality (4.2) holds. Since the case p = 0 has been
considered in Proposition 4.2, we can assume p > 0. Consider the function

ρ(x) =
pN

πN/2
e−2p2|x|2 .

Clearly ρ ∈ L1(RN ) and ‖ρ‖L1(RN ) = 1; hence, it defines a probability measure on RN . Consider

the linear transformation on R2N given by

u = x− y, v = x+ y.
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We note that the Jacobian of the transformation is 2. Thus

E(ρ) =

∫
RN

∫
RN

W (|x− y|) e−2p2|x|2 e−2p2|y|2 dxdy

=
1

2

∫
RN

∫
RN

W (|u|) e−p2|u+v|2/2 e−p
2|u−v|2/2 dudv

=
1

2

∫
RN

∫
RN

W (|u|) e−p2(|u|2+|v|2) dudv

=
1

2

∫
RN

(∫
RN

W (|u|) e−p2|u|2 du
)
e−p

2|v|2 dv < 0.

Hence, the energy E satisfies (HE). �

Remark 4.4. Another useful criterion can be obtained by using the Fourier transform, as also noted
in [35]. Namely if w ∈ L2(RN ), for measure µ that has a density ρ ∈ L2(RN ), by Plancharel’s
theorem

E(µ) =

∫
RN

∫
RN

w(x− y) dµ(x)dµ(y) =

∫
RN

ŵ(ξ)|ρ̂(ξ)|2dξ.

So if the real part of ŵ is positive, the energy does not have a minimizer.
This criterion can be refined. By Bochner’s theorem the Fourier transforms of finite nonnegative

measures are precisely the positive definite functions. Thus we know which family of functions,
ρ̂ belongs to. Hence we can formulate the following criterion: If w ∈ L2(RN ) and there exists
a positive definite complex valued function ψ such that

∫
ŵ(ξ)|ψ2(ξ)|dξ 6 0 then the energy E

satisfies the condition (HE).

Acknowledgments. The authors would like to thank the Center for Nonlinear Analysis of the
Carnegie Mellon University for its support, and hospitality during IT’s visit. RS was supported by
the Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology)
through the Carnegie Mellon Portugal Program under Grant SFRH/BD/33778/2009. DS is grateful
to NSF (grant DMS-1211760) and FCT (grant UTA CMU/MAT/0007/2009). IT was also partially
supported by the Applied Mathematics Laboratory of the Centre de Recherches Mathématiques.
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[2] D. Balagué, J.A. Carrillo, T. Laurent, and G. Raoul. Dimensionality of local minimizers of the interaction energy.
Arch. Rational Mech. Anal., 209:1055–1088, 2013.
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[4] D. Balagué, J.A. Carrillo, and Y. Yao. Confinement for attractive-repulsive kernels. Discret. Contin. Dyn. S. -
Series A. to appear.

[5] D. Benedetto, E. Caglioti, and M. Pulvirenti. A kinetic equation for granular media. RAIRO Modél. Math. Anal.
Numér., 31(5):615–641, 1997.

[6] A.J. Bernoff and C.M. Topaz. A primer of swarm equilibria. SIAM J. Appl. Dyn. Syst., 10(1):212–250, 2011.
[7] A.L. Bertozzi, J.A. Carrillo, and T. Laurent. Blow-up in multidimensional aggregation equations with mildly

singular interaction kernels. Nonlinearity, 22(3):683–710, 2009.
[8] A.L. Bertozzi and T. Laurent. Finite-time blow-up of solutions of an aggregation equation in Rn. Comm. Math.

Phys., 274(3):717–735, 2007.



14 ROBERT SIMIONE, DEJAN SLEPČEV, AND IHSAN TOPALOGLU
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