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Abstract. A long-wave asymptotic model is developed for the flow of an axisymmetric viscous
film lining the interior of a tube for the case where slip occurs at the tube wall. Both the case of a
falling film with a passive air core and that of a film driven up the tube by pressure-driven airflow
are considered. The impact of slip on the net liquid volume flux is discussed, and linear stability
analysis of the evolution equation is conducted to identify the impact of slip on the phase speed and
growth rates of disturbances in each case. The presence of slip enhances the growth rates, though
its impact on phase speed depends on the film thickness and the strength of the core airflow. For
some parameter combinations, slip can modify the phase speed without altering the base flow. The
nonlinear evolution of the free surface is then studied numerically. For falling films, increasing the
slip length reduces the critical thickness required for plug formation to occur. Families of traveling
wave solutions are found via continuation and are used to derive a simple formula for the dependence
of this critical thickness on the slip length; this formula is shown to hold for small slip length. For
air-driven films, the topology of streamlines in the film can be altered by slip at the wall; if the slip
length is large enough, it can prevent regions of recirculation from forming at the wave crest.

1. Introduction

Viscous films flowing along the inside or outside of a tube occur in many biological and engi-
neering contexts; see, e.g., Craster & Matar (2009); Oron et al. (1997) for a review of the varied
applications in which these flows arise. Due to both their presence in applications and the rich
variety of dynamics possible in these flows, there have been numerous experimental, theoretical,
and computational studies conducted in recent years. These studies have combined to shed light
on the primary mechanisms of instability growth and saturation in a variety of contexts.

The free surface in these flows is often unstable, particularly to long-wave disturbances, and many
linear stability studies have carefully outlined the parameter regimes in which the free surface is
unstable for falling films, air-driven films, core-annular flows, stratified flows, and many others; see,
e.g., Goren (1962); Hickox (1971); Joseph et al. (1997); Yih (1967). For these flows, instability
growth can be due to the Kapitza instability, which also arises in flows along inclined planes and is
driven by inertial effects; Benjamin (1957) and Yih (1963) were among the pioneers in theoretical
studies of the critical Reynolds number above which free-surface waves may be observed in falling
films. A second instability, the Plateau-Rayleigh instability that occurs in liquid jets, may also
arise due to the cylindrical geometry of the tube. The focus here will be on situations where the
Plateau-Rayleigh instability is the dominant one.

The long-wave disturbances that grow often saturate well outside the linear regime, which has
motivated the development of strongly nonlinear asymptotic models for the evolution of the free
surface. For films flowing along the interior of a tube, such models have effectively captured a
variety of observed dynamical outcomes in experiments, including axisymmetric wave trains, plug
formation, chaotic dynamics, and non-axisymmetric disturbances.

These models, based on lubrication theory, may be classified into one of several categories, such
as thin-film, long-wave, and integral boundary layer models. Thin-film models capture the primary
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features of these flows and are most amenable to analysis owing to the relatively simple form of
the nonlinear terms; examples of such models include those developed by Benney (1966), Frenkel
(1992), and Kerchman (1995). Long-wave models contain more complicated nonlinear terms, arising
from the cylindrical geometry of the tube, that can improve the quantitative (and in some cases
qualitative) agreement between model and experiments; examples of such models for flow along
the interior or exterior of a cylinder include those of Lin & Liu (1975), Craster & Matar (2006),
and Camassa et al. (2012). Integral boundary layer models are able to successfully model flows
at moderate Reynolds numbers; see, e.g., Dietze & Ruyer-Quil (2015), and Dietze et al. (2020)
for models of flow inside a tube. The current study is focused on the flow of highly viscous films
and will be primarily concerned with long-wave models, with discussion of a thin-film counterpart
model as well. A brief, and admittedly incomplete, review of these asymptotic models is given next.

The free surface of an axisymmetric film falling along a vertical tube was modeled by Frenkel
(1992). Kerchman & Frenkel (1994) explored numerical simulations of this thin-film model with
particular attention paid to the collision of two free-surface waves and the ensuing dynamics,
including elastic rebounds or wave mergers. Kalliadasis & Chang (1994) used self-similar solutions
of Frenkel’s model to identify a critical thickness, hc. For film thicknesses smaller than hc, solitary
wave solutions were found, with the wave amplitude tending towards infinity as the film thickness
increased to some value hc from below; once the thickness of the film exceeded this critical value,
no such solutions were found, and the transient model solutions exhibited growth bounded only by
the availability of fluid in the domain. This growth is indicative of the formation of large droplets
for films on the exterior of a tube, and plug formation for films on the interior. More recently, this
work was revisited by Yu & Hinch (2013) who obtained higher-order corrections, improving the
approximation of the dependence of wave speed on the dimensionless control parameter used. In
experiments, Quéré (1990, 1999) demonstrated that this critical film thickness for drop formation
scaled with the cube of the fiber radius, and was independent of fluid viscosity.

Several long-wave models have provided further insight into droplet or plug formation. Craster
& Matar (2006) developed a long wave model for a falling film on a fiber; this model is very
similar to the somewhat ad-hoc model of Kliakhandler et al. (2001). Craster and Matar identified
three distinct film flow regimes in their model, and found good agreement with experiments they
conducted. Linear stability analysis from a spatiotemporal viewpoint was conducted for this model
by Duprat et al. (2007), who showed that instabilities could be classified as convective or absolute in
good agreement with experiments. A similar model was developed by Camassa et al. (2016, 2014)
(also see Lin & Liu, 1975) for falling films inside tubes and was shown to accurately capture whether
plugs could be expected to form in experiments. Numerical solutions of the model indicated plug
formation through the free surface approaching the center of the tube in finite time, as it had been
observed in previous models, e.g. by Gauglitz & Radke (1988); Halpern & Grotberg (1992); Johnson
et al. (1991); Otis et al. (1993). Additionally, traveling wave solutions could be used to predict
plug formation; solutions were only found for parameter values that did not result in plugs, with
a turnaround point in families of traveling wave solutions indicative of the critical film thickness
hc. This method for predicting plug formation has been successfully applied in other models; see,
e.g., Dietze et al. (2020); Ding et al. (2019); Ogrosky (2021a,b).

The presence of counter-current gas flow in the core region of the tube can slow or reverse
the motion of a film falling down a tube wall. Kerchman (1995) developed a thin-film model
and conducted an extensive numerical study of both transient and traveling wave solutions. A
long-wave model derived by Camassa et al. (2012) was shown to provide qualitative agreement
with experiments they conducted; this qualitative agreement was improved in a subsequent study
by Camassa et al. (2017) in which the slope of the free surface is accounted for when estimating the
stress exerted by the core flow on the free surface. Integral boundary layer models were derived for
co- or counter-current gas flow inside a channel or tube by Dietze & Ruyer-Quil (2013, 2015), and
turning points in the model’s traveling wave solution families were successfully used to predict plug
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formation (Dietze et al., 2020). A novel method was used for selecting the appropriate wavelength
to use when identifying the turning point, and plug formation was categorized as certain, possible,
or not possible for a variety of Reynolds numbers.

All of the models discussed above were derived using no-slip boundary conditions. Recent as-
ymptotic modeling studies have also provided insight into the role slip at the wall may play in
enhancing free-surface instability. Samanta et al. (2011) studied the impact of slip on films falling
down slippery inclined plans. The impact of slip was found to be non-trivial as it destabilized
waves near the onset of an instability, but at higher Reynolds numbers, slip at the wall had a
stabilizing effect. Samanta et al. (2013) extended this work by allowing for non-negligible porous
layer flow and studying the impacts of the porous layer on the film’s stability. Hossain & Behera
(2022) included the impact of shear stress at the film’s free surface and studied the impact of slip
and shear stress on the stability of a film along an inclined plane. Haefner et al. (2015) used a
model to explore the impact of slip on the Plateau-Rayleigh instability for a film along a fibre;
both the model and experiments that they conducted demonstrated that wall slip increased the
growth rate of instabilities. Ding & Liu (2011) derived a thin-film equation for the free surface of a
film falling down the exterior of a porous vertical cylinder. They showed that in this setting, with
effects of gravity included, porosity increased the growth rate of instabilities as well. This work
was extended by Ding et al. (2013) who used an integral boundary layer model to study moderate
Reynolds number flow. Halpern & Wei (2017) determined that for films coating a fiber, slip at the
wall resulted in larger drops; their results suggested a possible explanation for slight discrepancies
between no-slip models and the experiments of Quéré (1990). For a falling film inside a tube, Liu
& Ding (2017) extended the long-wave model of Camassa et al. (2014) to account for slip due to
a porous wall. Their numerical simulations and classification of instabilities as absolute or convec-
tive demonstrated that slip promotes plug formation. Chao et al. (2018) considered a film flowing
down a uniformly heated or cooled cylinder wall. The effect of a precursor layer was considered by
Ma et al. (2020), who studied a film flowing down the outside of the tube with slip. They found
that with a precursor layer, slip decreased the amplitude of the wave front flowing down the tube;
without this precursor layer, the model and results confirm those found by Liu & Ding (2017).

The aim of this paper is to develop an asymptotic model for the flow of a highly viscous film
inside a vertical tube with slip at the wall, and to study the impact of wall slip on the characteristics
of the flow, including instability growth rates and speed, plug formation, and streamline topology.
As the model will be derived with applications in mind in which the Plateau-Rayleigh instability is
dominant over the Kapitza instability, the derivation will make use of assumed small liquid Reynolds
number. This model will be a long-wave type model, with gravity, surface tension, and counter-
current airflow all included in the derivation; in the limit of no slip the model reduces to that of
Camassa et al. (2012). To our knowledge, this is the first long-wave model that has simultaneously
incorporated all of these effects. The impact of the core flow on the film will be estimated in the
model using the ‘locally-Poiseuille’ approach of Camassa et al. (2012); this approach makes use
of an assumed laminar profile in the core, though it has also been applied to experiments with
turbulent airflow through use of a modified effective viscosity. The case of a passive air core will
be considered first, in which case the model is identical to that considered by Liu & Ding (2017)
where it was shown that slip promotes plug formation. We will explore this further using turning
points in traveling wave solution families. This different approach will allow a simple formula for
the dependence of critical film thickness on slip length, valid for small slip length, to be derived.
Counter-current airflow will be considered next, and the impact of slip on streamline topology will
be examined.

The remainder of this paper is organized as follows: in Section 2, a long-wave asymptotic model
for the flow of a film with slip lining the interior of a tube is derived; a thin-film counterpart model
is also derived. In Section 3, linear stability analysis is conducted, and nonlinear solutions are
presented in Section 4. Conclusions are given in Section 5.
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Figure 1. Schematic diagram of the rigid tube setup and definition of variables.

2. Model

In this paper we will consider an axisymmetric viscous film that lines the interior of a vertical
tube. The core region of the tube contains a second, less viscous fluid, taken here to be air. In the
model developed below, two cases for the air will be considered: (i) a passive air core (and hence
falling film), and (ii) air forced to flow up the tube due to an imposed pressure gradient.

2.1. Governing equations. The flow of the film is governed by the incompressible, axisymmetric
Navier-Stokes equations:

ρ(ut + uur + wuz) = −pr + µ

[
1

r
∂r(rur) + uzz −

u

r2

]
, (1a)

ρ(wt + uwr + wwz) = −pz + µ

[
1

r
∂r(rwr) + wzz

]
− ρg, (1b)

1

r
∂r(ru) + wz = 0. (1c)

where (u,w) denote velocity in the radial, r, and axial, z, directions respectively, with z increasing
in the upward direction along the tube. Other variables and parameters include pressure p, density
ρ, viscosity µ, and acceleration due to gravity g. Figure (1) shows a schematic of the tube and
the variables; additional variables include R0 denoting the average distance from the tube’s center
r = 0 to the film’s free surface, and R(z, t) denoting the distance from the tube center to the free
surface. The radius of the tube is given by a and κ is a typical length scale in the axial direction,
such as a wavelength of a typical disturbance. Quantities with dimensions are denoted with an
overbar, and subscripts denote partial derivatives.

Typically a no-slip boundary condition is applied at the tube wall r = a. Here, we investigate
the effects of slip on the film flow with a Navier slip boundary condition with slip length Λ:

w = −Λwr, (2a)

u = 0. (2b)
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We note that boundary condition (2a) also arises in the study of flow of a film along a porous
tube wall since, under certain simplifying assumptions, the flow of the film decouples from the flow
within the pores. Briefly, the axial velocity in the porous medium, governed by Darcy’s Law, is
given by w(m) = −K(pz − ρg)/µ where K is the permeability. Permeability values for natural
materials vary widely. Typical values for soils are between 10−9 and 10−10 whereas for clean gravel
they are between 10−7 and 10−9. At the fluid-porous wall interface, the Beavers-Joseph boundary

condition wr = −α(w − w(m))/
√
K may be used for the axial velocity (Beavers & Joseph, 1967),

where α is a parameter with value determined by the properties of the porous medium. If the pore

velocity w(m) is much smaller than the film velocity w, a condition which holds if K/h
2
0 ≪ 1 where

h0 is the mean film thickness, then this boundary condition may be approximated by (2a); see,
e.g.,Liu & Ding (2017); Pascal (1999) and references therein for further discussion.

At the free surface r = R(z, t) we require continuity of tangential stress,

(wr + uz)(1−R
2
z) + 2(ur − wz)Rz = τ (g), (3)

with τ (g) denoting the tangential stress exerted by the gas flow on the film’s free surface; a jump
in normal stress (according to the Young-Laplace law),

2µ(ur + wzR
2
z) + µRz(wr + uz)− 2µ(g)(u

(g)
r + w

(g)
z R

2
z)− µ(g)Rz(w

(g)
r + u

(g)
z )

= (p− p(g))(1 +R
2
z) + σ(1 +R

2
z)

(
1

R(1 +R
2
z)

1/2
− Rzz

(1 +R
2
z)

3/2

)
, (4)

with σ the surface tension and superscripts of (g) denoting variables in the core gas flow; and the
kinematic condition

u = Rt + wRz. (5)

There is a steady ‘flat-film’ solution to (1)–(5) with w = w(r), p = p(z), u = 0 and with free
surface R = R0,

w =
1

4

(
p
(g)
z + ρg

µ

)(
r2 − a2 − 2R

2
0 ln

r

a
− 2Λ

a

(
a2 −R

2
0

))
+R0τ

(g)

(
ln

r

a
− Λ

a

)
. (6)

In the no-slip limit, i.e. Λ = 0, the velocity profile takes on the form seen in, e.g., Camassa &
Ogrosky (2015). As this solution is unstable to long-wave disturbances, long-wave asymptotics will
be used to derive a model for the evolution of the free surface next.

2.2. Model Derivation. Equations (1)–(5) may be made dimensionless using the following refer-
ence scales:

r =
r

R0

, z =
z

κ
, u =

u

U0

, w =
w

W 0

, t =
tW 0

κ
, p =

ϵpR0

µW 0

, τ =
τR0

µW 0

, (7)

where U0 and W 0 are reference velocity scales. Since we will be considering airflow moving up
the tube at a constant volume flux due to an imposed pressure gradient, here we use the mean
centerline velocity of the air for the axial velocity scale:

W 0 =
2Q

(g)

πR
2
0

, (8)

where Q
(g)

is the (constant) volume flux of air. This choice of scales is similar to that used
by Camassa et al. (2012). In the following model derivation, the ‘long-wave’ assumption,

ϵ =
R0

κ
≪ 1, (9)
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will be made. Using the relation (9), we also obtain that U0 = ϵW 0 due to the continuity equation
(1c). The exact value of the lengthscale κ, which denotes a typical free-surface wavelength, need
not necessarily be specified when deriving the model (though this value could be taken to be one of
several reasonable choices, including (i) the most unstable wavelength, 2

√
2πR0, arising due to the

Plateau-Rayleigh instability as found in Section 3, or (ii) the typical wavelength of a traveling wave
seen in simulations). Note that while other lengthscale ratios could be employed in the asymptotic
expansion, the ratio of R0/κ is a natural one to use due to the dependence of the most unstable
free-surface wavelength on the mean free-surface radius R0.

Substituting (7) into (1)-(5) results in

ϵ3Re(ut + uur + wuz) = −pr + ϵ2
[
1

r
∂r(rur) + ϵ2uzz +

u

r2

]
, (10a)

ϵRe(wt + uwr + wwz) = −pz +

(
1

r
∂r(rwr) + ϵ2wzz

)
− Re

Fr2
, (10b)

1

r
∂r(ru) + wz = 0, (10c)

where Re = ρW 0R0/µ and Fr = W 0/
√
gR0 are the Reynolds and Froude numbers, respectively.

The boundary conditions at the wall r = a are

w = −Λwr, u = 0. (11)

The boundary conditions at the free surface r = R(z, t) are given by

(wr + ϵ2uz)(1 + ϵ2R2
z) + 2ϵ2(ur + wz)Rz = τ (g), (12a)

2ϵ(ur + ϵ2wzR
2
z) + ϵRz(wr + ϵ2uz)−2ϵ(u(g)r + ϵ2w(g)

z R2
z)− ϵRz(w

(g)
r + ϵ2u(g)z )

= (1 + ϵ2R2
z)

[
p− p(g)

ϵ
+

1

C

(
1

R(1 + ϵ2R2
z)

1/2
− ϵ2Rzz

(1 + ϵ2R2
z)

3/2

)]
, (12b)

u = Rt + wRz, (12c)

where C = µW 0/σ is the capillary number.
In the limit ϵ → 0, the governing equations become

0 = pr, (13a)

1

r
(∂r(rwr)) = pz +

Re

Fr2
, (13b)

1

r
∂r(ru) + wz = 0, (13c)

while the boundary conditions at the free surface r = R(z, t) are

wr = τ (g), (14a)

−p = −p(g) +
ϵ

C

(
1

R
− ϵ2Rzz

)
, (14b)

u = Rt + wRz. (14c)

While the surface tension terms in (14b) do not appear strictly at leading order, they are retained
as in numerous other modeling studies of such film flows. These terms have been shown in previous
studies to accurately capture the upper bound on unstable wavenumbers, and the second term has
been demonstrated to be the lowest-order one that prevents shock formation. For flows down an
inclined plane with high surface tension and low volume flux, e.g, Gjevik (1970) explored the role
of these terms in the saturation of instability growth and identified their impact on the phase speed
and amplitude of free-surface waves of finite amplitude.
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Our model equation for the evolution of the film’s free surface may be found by integrating (13c)
across the fluid layer to obtain

Rt −
1

R

∂

∂z

ˆ a

R
wr dr = 0. (15)

In order to produce a closed model, an approximate expression is needed for w. This may be
found by solving (13b) for w by integrating twice and making use of the boundary conditions (11)
and (14a) to get

w =
1

4

(
pz +

Re

Fr2

)
(r2 − a2 − 2Λ̃a2) +

(
Rτ (g) − R2

2

(
pz +

Re

Fr2

))(
ln

(
r

a

)
− Λ̃

)
, (16)

where Λ̃ = Λ/a is a rescaled slip length.

Next, estimates for the stresses τ (g) and p
(g)
z imparted by the air at the free surface are needed.

There are many options for estimating these stresses; here, we will use the ‘locally-Poiseuille’
approach of Camassa et al. (2012) in which a laminar profile for the core flow is assumed. This
approach has the advantage of providing an extremely simple estimate of the stresses with the
drawback that these estimates have been shown to be underestimates in some experiments with
turbulent airflow (though a modified effective viscosity can mitigate these issues; see, e.g., Camassa
et al. (2012) for details). Other options which may be more appropriate for turbulent airflow include
those of Camassa et al. (2017); Trifonov (2010); Tseluiko & Kalliadasis (2011); incorporating these
closures into this model with slip is left for future work.

In this ‘locally-Poiseuille’ approach, the free-surface variations are assumed to be slowly-varying
in the axial direction, consistent with the long-wave derivation used above. The core flow is modeled
with the simple laminar profile of Poiseuille flow through a pipe, with the free surface, slowly varying
in z, serving as the air’s ‘tube wall’ here. A brief derivation is now given. The air is assumed to

flow at a constant volume flux Q
(g)

,

Q
(g)

=

ˆ R

0
2πrw(g)dr. (17)

The velocity profile w(g)(r) for 0 < r < R(z, t) is estimated by a slowly-varying Poiseuille flow
profile with zero velocity at the free surface r = R(z, t),

w(g) =
p
(g)
z

4µ(g)

(
r2 −R

2
)
. (18)

Substituting (18) into (17), integrating, and solving for p
(g)
z gives an estimate of the gas pressure

gradient,

p
(g)
z = −8µ(g)Q

(g)

πR
4 . (19)

Similarly, the tangential stress applied by the core flow on the free surface may be estimated by
evaluating µ(g)wr at the free surface r = R(z, t),

τ (g) =
4Q

(g)

πR
3 . (20)

In dimensionless form, and after substituting (19) and (20) into (14a) and (14b), respectively, we
get the estimates needed to close the model,

pz = − 4

mR4
+

ε

CR2
(Rz + ε2R2Rzzz) and τ g = − 2

mR3
, (21)
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where m = µ/µ(g). Plugging these stresses into the velocity results in the final model equation

Rt + [S1f1(R, a) + S2f2(R, a)]Rz +
S3

R
[f3(R, a)(Rz +R2Rzzz)]z = 0, (22)

where

S1 =
1

m
, S2 =

Re

2Fr2
, S3 =

1

16C
, (23)

and where

f1(R, a) =
a2

R4

[
a2

R2
− 1 + 2Λ̃

(
2a2

R2
− 1

)]
, (24a)

f2(R; a) = R2 − a2 + 2R2 ln
( a

R

)
− 2Λ̃(a2 −R2), (24b)

f3(R, a) =
a4

R2
+ 3R2 − 4a2 + 4R2 ln

( a

R

)
+

4Λ̃

R2
(a2 −R2)2. (24c)

The notation adopted here is similar to that used by Camassa et al. (2012) to provide ease of
comparison. The S1 term represents the effects of core flow acting through the free surface stresses,
while the S2 term contains the effect of gravity acting on the film. The S3 terms contain the effects
of surface tension acting at the free surface. Equation (22), a conservation law for R2, conserves
fluid volume. As in Camassa et al. (2012), here z and t are rescaled by ϵ in order to return to the
original aspect ratio. As a result ϵ is scaled out of equation (22), but the validity of the derivation
still relies on the assumption ϵ ≪ 1.

If S1 = 0, the model is identical to the one derived by Liu & Ding (2017) for film flow over

a porous wall. In the no-slip limit, i.e. Λ̃ = 0, the model of Camassa et al. (2012) is recovered;

furthermore, if Λ̃ = 0 and S1 = 0 the no-slip falling film model of Camassa et al. (2014) is recovered.
(There is a slight difference in the definition of S2 here and in Camassa et al. (2014) due to having
neglected the density of the core fluid – taken here to be air – in the current derivation). Note
that for a falling film, time may be rescaled by S2 and the dynamics are governed by the single

parameter ratio S3/S2. Finally, if Λ̃ = 0, S2 = 0 and S1 ̸= 0, the no-slip model of Camassa &
Ogrosky (2015) is recovered; in this case, time may be rescaled by S1 with the dynamics governed
by S3/S1.

We note that for the falling film case with passive core (S1 = 0, S2 > 0) it would be appropriate to

derive the model equation using a different velocity scale (e.g. the Nusselt velocity WN = ρgh
2
0/µ)

than the core flow scale of (8), as done in Camassa et al. (2014) and Liu & Ding (2017) for the
no-slip and slip cases, respectively. As the resulting model equation, however, is identical in form
to those of (22), a separate derivation is omitted here.

2.3. Thin Film Limit. If the film thickness is assumed to be small relative to the tube radius,
the model may be simplified. Defining a rescaled film thickness

η =
a−R

a− 1
, (25)

so that η = 0 at the wall and η = 1 at the undisturbed free surface r = R0, substituting R = a−βη,
where β = a− 1, into (22), and expanding about β = 0 results in

ηt + 2βS1

[
(η + Λ∗) + β

(
11

2
η2 + 8Λ∗

)]
ηz − 2β2S2(η

2 + 2Λ∗η)ηz

+
16β3S3

3

[(
η3 + 3Λ∗η2

)
(ηz + ηzzz)

]
z
= 0. (26)

Here Λ∗ = Λ/β is a rescaled slip length, and terms up to O(β2) have been retained in both the S1

and S2 terms, while terms of O(β3) have been retained in the S3 terms. Several models previously
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studied in the literature can be recovered in various limits. In the no-slip limit with Λ∗ = 0, the
thin-film model of Camassa & Ogrosky (2015) is recovered; if, in addition, S1 = 0, the model of
Frenkel (1992) is recovered while if S2 = 0, the model of Kerchman (1995) is recovered; in the

absence of any base flow, i.e. S1 = S2 = 0 and Λ̃ = 0, then the model of Hammond (1983) is
recovered. In the case of slip where Λ∗ > 0, if S1 = 0, the model reduces to the one derived by
Halpern & Wei (2017) for flow down a fiber.

Note that the S1 term appears at O(β) while the S2 term appears at O(β2). We also note that
equation (26) is a conservation law for film thickness h while equation (22) is a conservation law
for fluid volume. Note that in the thin-film limit h/a → 0, conserving h and conserving R2 are
identical; for moderately thick films, however, approximating fluid volume conservation can lead to
distinct behavior in model solutions, e.g. (Camassa & Ogrosky, 2015).

2.4. Parameter values. Before finding model solutions, we briefly discuss parameter values that
are relevant for experiments from the literature. First, it should be emphasized that terms of O(ϵRe)
have been assumed small in the derivation here. This model is thus only applicable in situations
where the Plateau-Rayleigh instability may be expected to dominate the Kapitza instability. For
higher Reynolds number flows, one might opt to retain the inertial terms in the derivation, or use
an integral boundary layer modeling approach, which has been shown to have success matching
experiments with moderate to high liquid Reynolds number.

Second, relevant values of slip length parameter Λ are discussed. For liquid flows over rough
surfaces without any superhydrophobic properties, slip lengths are typically on the order of hun-
dreds of nanometers. These slip lengths may be larger for flows involving polymeric liquids like
silicone oil; such liquids have been shown to produce an apparent wall slip length of 1-10 microns
(Brochard-Wyart et al., 1994). Thus, e.g., for films inside tubes with mean free surface R0 on the
order of 1 mm (10 µm), one may have Λ ≈ 0.001 (0.1). Slip lengths within this range may be
expected in some of the falling film experiments conducted by Camassa et al. (2014) using silicone
oil inside tubes of radius a = 0.5 cm, 0.295 cm, and 0.17 cm; the smallest tube had films with mean
free surface R0 0.5-1.2 mm, resulting in Λ taking on values as large as 0.01. The experiments of
Camassa et al. (2012) consider a silicone oil film driven up a tube by airflow with R0 ≈ 0.4 cm,
resulting in Λ taking on values on the order of a thousandth. For flow over hydrophobic surfaces
or over a porous medium, larger values of slip length may be appropriate, as discussed in related
studies; e.g., Liu & Ding (2017) consider a falling film with dimensionless slip lengths that, in the
scaling used here, correspond to Λ ≈ 0.1. For film flows outside of a tube, Halpern & Wei (2017)
have shown that inclusion of slip in a falling film model can account for discrepancies between
no-slip models and the experiments of Quéré (1990) on falling films and droplets along fibers; in
these experiments, the film thickness was as small as 20 microns. With these applications in mind,

we present results for values of Λ̃ primarily covering a range of values from a few thousandths to

a tenth. In a few instances results are also presented for larger values of Λ̃ in order to explore the
mathematics of the model at larger slip lengths.

Third, the values of S1, S2, and S3 used here were chosen to be compatible with previous
experiments. In the falling film experiments of Camassa et al. (2014), the silicone oil used had
viscosity µ = 129 P, density ρ = 0.97 g/cm3, and surface tension γ = 21.5 dyn/cm, corresponding
to a Kapitza number Ka = 3.3×10−3. For experiments with a = 0.295 cm, this results in the ratio
S3/S2 taking on values in the range 0.05-0.8; for a = 0.17 cm, the ratio S3/S2 takes on values in the
range 0.2-1.1. Results are presented below for S3/S2 = 0.35 which fall within both of these ranges.
The value of a in these smaller-radius experiments took on a wide range of values, from 1.28-6. In
the air-driven experiments of Camassa et al. (2012), which used silicone oil with the same density,
viscosity, and surface tension as those of Camassa et al. (2014), a = 0.5 cm, the volume flux of

air Q(g) ranged from 330 to 1170 cm3/s, and R0 took on values from 0.35 to 0.45 cm. The value
of a = a/R0 ranged from 1.1 to 1.45. The ratio S2/S1 used in the no-slip model to compare with
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these experiments covered a range of values from 1 to near 100, with this range partly dependent on
whether a modified effective viscosity is used as a model for the effects of airflow turbulence; while
admittedly crude, this approach was shown to qualitatively capture features of the experiments.
The ratio S3/S1, which may be expected to govern the dynamics for strong airflow, took on values
of 0.01-1.

Here, results are presented with S2/S1 = 8 which with a = 2 corresponds to Re(g) = 3700 and

Re(l) = ρWNR0/µ = 8.7×10−4. These values could be realized, e.g., in the experiments of Camassa

et al. (2012) with tube radius a = 0.5 cm, air volume flux Q
(g)

= 670 cm3/s, an effective viscosity

µ(g) = 5.4 × 10−4 g/cm3, and mean free-surface radius R0 = 0.25 cm, resulting in S3/S1 = 0.36.
For falling films, results are presented with S3/S2 = 0.35, which with a = 1.9 corresponds to

Re(l) = 2.8 × 10−5. These values correspond to the smallest-tube radius experiments of Camassa
et al. (2014) with a = 0.17 cm and R0 = 0.09 cm.

3. Linear Stability Analysis

Before a detailed linear stability analysis, we emphasize the impact of slip on the liquid volume
flux. For a film with constant free surface R = 1, the dimensionless volume flux Q0 of the film is

Q0 = 2π

ˆ a

1
r w0(r) dr

=
πS1

2

[
(a2 − 1)2 + 4Λ̃(a4 − a2)

]
− πS2

4

[
a4 + 3− 4a2 + 4 ln a+ 4Λ̃(a2 − 1)2

]
, (27)

where

w0(r) = S1(a
2 − r2 + 2Λ̃a2)− S2

2

(
a2 − r2 + 2 ln

r

a
+ 2Λ̃(a2 − 1)

)
(28)

is the velocity profile in dimensionless form. If S1 = 0 and S2 > 0, then Q0 < 0 for all values of a

and Λ̃ = 0; similarly, if S1 > 0 and S2 = 0, then Q0 > 0. In both cases, increasing Λ̃ increases |Q0|.
Figure 2(a) shows Q0 for a variety of a and Λ̃ values in the case where both S1 and S2 are

positive. If the film is thin enough, the liquid volume flux is positive, indicating net movement up
the tube; if the film is thicker, the net movement is down the tube.

There is a value of a for which the flux and base velocity profile are independent of Λ̃, namely

a∗ =
√

S2/(S2 − 2S1). (29)

With S2/S1 = 8 as in figure 2(a), a∗ ≈ 1.15. This a∗ value is also the value of a for which
dw0
dr |r=a = 0, as seen in figure 2(c). For a < a∗, dw0

dr |r=a < 0 as in figure 2(b), and for a > a∗,
dw0
dr |r=a > 0 as in figure 2(d). If the airflow is strong enough so that S2/S1 < 2, no such a∗ value

exists, and dw0
dr |r=a > 0 for all a.

Figure 2(a) shows that for a > a∗ but not too large, as Λ̃ increases the flux changes signs from
positive to negative. This occurs whenever the slip length increases past the value

Λ̃ =
2S1(a

2 − 1)2 − S2(a
4 − 4a2 + 3 + 4 ln a)

−8S1(a4 − a2) + 4S2(a2 − 1)2
. (30)

For S2/S1 = 8 and a = 1.2, corresponding to the stars in figure 2(a), Q0 = 0 for Λ̃ ≈ 0.039.
We note that while the net transport may be in one direction, the film’s velocity profile w0 may

change sign in the fluid layer. Figure 2(b) shows w0(r) for the solutions in figure 2(a) with a = 1.2.
For each of the profiles there is some portion of the film close to the wall that is moving down the
tube and some portion along the free surface moving up the tube. For values of slip length

Λ̃ >
(2S1 − S2)(a

2 − 1) + 2S2 ln a

−4S1a2 + 2S2(a2 − 1)
(31)
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Figure 2. (a) Liquid volume flux Q0 for constant free surface R = 1 for various a

and Λ̃ and with S2/S1 = 8. The flux has been rescaled by S1. (b) Velocity profile
w0(r) corresponding to ∗’s at a = 1.1 in (a). Velocity has been rescaled by S1.
(c) Same as (b), but corresponding to △ in (a) at a = a∗. (d) Same as (b), but
corresponding to ∗’s at a = 1.2 in (a).

the velocity profile w0(r) < 0 for all r. For S2/S1 = 8 and a = 1.2 as in figure 2(b), this occurs

when Λ̃ ⪆ 0.217.

Next, we proceed to temporal linear stability analysis of (22). In the case of no slip, i.e. Λ̃ = 0, it
has been shown that the free surface modeled in (22) is unstable to long-wave disturbances (Camassa
& Ogrosky, 2015). The speed of disturbances is governed by the competition between the S1 and S2

terms, with the S1 terms representing the impact of airflow moving disturbances up the tube and
the S2 terms incorporating the impact of gravity on disturbances. It is worth noting that positive
S2 values show that gravity acts counter to the gas shear stress. The growth rate is positive for
small wavenumbers and is set by the S3 terms, which contain both stabilizing and destabilizing
effects of surface tension due to the axial and azimuthal curvature of the free surface, respectively.
Next, the effect of slip on the stability of the free surface is examined.

Consider a small perturbation to an otherwise undisturbed free surface:

R = 1 +Aei(kz−ωt), (32)

where k is the (real) wavenumber, ω is the frequency, and A ≪ 1 is the amplitude of the disturbance.
Substituting (32) into (22), ignoring the higher order terms in A, and solving for ω gives

ω =
[
S1

(
a4 − a2 + 2a2Λ̃(2a2 − 1)

)
+ S2

(
1− a2 + 2 ln(a)− 2Λ̃(a2 − 1)

)]
k

+
[
iS3

(
a4 + 3− 4a2 + 4 ln(a) + 4Λ̃(a2 − 1)2

)]
(k2 − k4). (33)

The dispersion relation, ω, is a complex number with the linear wave speed being given by the real
part of ω divided by the wavenumber (Re(ω)/k) and the growth rate of the waves given by Im(ω).
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Figure 3. Phase speed from (33) for a variety of a and Λ̃ values. (a) Air driven
flow with S2/S1 = 0. (b) S2/S1 = 8.

What impact does slip have on the speed of free-surface disturbances? In the case where S1 > 0
and S2 = 0, disturbances will move up the tube due to pressure-driven airflow. Figure 3(a) shows

that as Λ̃ increases, the waves’ speed increases, moving up the tube faster. Similarly, in the case

where S1 = 0 and S2 > 0, waves fall down the tube, with speed increasing as Λ̃ increases, as shown
by Liu & Ding (2017). In both cases, the phase speed increases with film thickness parameter a.

Figure 3(b) shows the phase speed for S2/S1 = 8. In this case with both S1 and S2 fixed and
nonzero, the direction of wave propagation depends on film thickness parameter a. For thin films
with a close to 1, waves move up the tube, consistent with the S1 terms appearing at O(β) while
the S2 terms appear at O(β2) in (26). For thick films with much larger values of a, waves also
move up the tube. This is consistent with the assumed constant volume flux of air in the model
derivation and the resulting 1/R3 scaling of the free-surface tangential stress. In between these
extremes, an intermediate range of film thicknesses exists where waves may propagate down the

tube. This interval of a-values depends on the value of Λ̃, though it is interesting to note that

there are two values of a in figure 3(b) for which the phase speed is independent of Λ̃; these may
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Figure 4. a∗ (see (29)) and a∗ (see (34)) for various values of S2/S1.

be found analytically by finding the roots of

2S1a
4
∗ − (S1 + S2)a

2
∗ + S2 = 0. (34)

In figure 3(b) with S2/S1 = 8 these are a∗ ≈ 1.10 and a∗ ≈ 1.81. We note that if S2/S1 < 3+2
√
2,

then there are no such values a∗ for which phase speed is independent of Λ̃. Also in figure 3(b), it

is apparent that for Λ̃ = 0, the phase speed initially increases as a increases from 1 before reaching

a local maximum; for larger Λ̃, the phase speed initially decreases. It may be shown that the initial

increase in phase speed occurs for all Λ̃ < S1/(2S2 − 6S1) so long as S2/S1 > 3.

Figure 4 shows the dependence of a∗ (base flow velocity and flux independent of Λ̃) and a∗ (phase

speed independent of Λ̃) on S2/S1. Note that the value of a∗ and a∗ are in general not identical.
This means that for fixed S2/S1, there is a value of a, namely a∗, for which the base flow velocity
profile is independent of slip length, but the speed of infinitesimal free-surface disturbances is not.
It seems noteworthy that a parameter that only appears in the boundary condition at the wall
can have no impact on the film flow profile throughout the fluid layer but be felt at the opposite
boundary. It appears that the same phenomenon is present in the thin-film model of Hossain &
Behera (2022) for film flow along a slippery inclined plane with shear stress applied at the free
surface, though the primary focus there was on whether the film was unstable.

Next, how does slip at the wall impact the growth rate of disturbances? Figure 5 shows the linear

growth rates for a variety of slip length and film thickness values (i.e. various Λ̃ and a values).
For all parameter values, the free surface is unstable to long-wave disturbances with wavenumbers
bounded above by cut-off wavenumber k = 1, as in the no-slip case. Here k = 1 corresponds to the
cut-off wavenumber of the Plateau-Rayleigh instability. The wavenumber of maximum growth rate

is also the same as the no-slip case, kmax = 1/
√
2. The growth rates increase with both Λ̃ and film

thickness parameter a.

4. Nonlinear Solutions

What impact does slip have on the saturation of the instability growth explored in the previous
section? To understand this, numerical solutions to (22) will be found, and families of traveling
wave solutions will also be studied.

4.1. Transient solutions. Equation (22) may be solved approximately using the method of lines;
a brief outline is given here, with more details available in, e.g., Camassa et al. (2014). Periodic
boundary conditions in z were used. The initial condition consisted of a constant free surface R0

perturbed by one or more small-amplitude Fourier modes. A variety of wavenumbers, amplitudes,
and phase shifts were used; for the most part, the results were independent of initial conditions
used; one exception is that there is a range of unperturbed film thickness for which the occurrence
and timing of plug formation may depend on the initial conditions. This dependence, however,
only occurs over a small range and further exploration of this sensitivity is left for future work.
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Figure 5. The growth rates for different values of Λ̃ are shown for (a) a = 1.1, (b)
a = 1.307, and (c) a = 2.0.

The algorithm used is pseudospectral with spatial derivatives being calculated in Fourier space
while nonlinear terms are calculated in physical space. To integrate with respect to time, a second-
order predictor-corrector scheme is used. The strongly nonlinear terms required that the Fourier
coefficients be dealiased after every time step. The total volume of fluid was monitored during
the simulation; if this value varied more than some small specified tolerance, the simulation was
rerun with smaller ∆z and ∆t. These numerical solutions were verified by comparing instability
growth and propagation early in simulations with the linear stability analysis results and with
no-slip results from earlier studies.

The case of passive core flow (S1 = 0) is considered first. Figure 6 shows successive snapshots of
the free surface taken at regularly-spaced time intervals from numerical solutions to (22). In order
to track the wave crests properly, each snapshot has been aligned by shifting it in z by an amount
corresponding to the phase speed found in Section 3 (or approximately the phase speed, due to
the discretization used when numerically finding solutions). It’s worth noting that gravity is acting
from right-to-left in these plots; hence, the waves are moving in the negative z-direction. In each
of the simulations shown, S1 = 0, S3/S2 = 0.35, and a = 1.27 (here S2 = 1.607, S3 = 0.568, though
the specific values do not affect the dynamical outcomes, only the timescale of the evolution). In
the absence of pressure-driven airflow, the film flows down the tube. During the early stages, waves
grow in amplitude with the expected growth rate; at later stages, one of two things happen. For

small values of Λ̃, the nonlinearities in the model cause the saturation of wave growth, resulting
in wave trains propagating down the tube; these waves interact with one another, but maintain a
mostly steady shape.

For larger values of Λ̃, the fastest-growing wave may undergo accelerated growth, with the wave
crest appearing to approach the center of the tube in finite time. This R → 0 behavior is an
indication of plug formation and may be taken as a model prediction that plugs will form. This
same behavior can also occur due to the merger of two free-surface waves as occurs in figure 6(c)
near the right of the final shapshot shown. In order to see the amplitude of these waves during
the late-time stages of each simulation more clearly, figure 6(d)-(f) shows the free surface in the
tube geometry at the final time of each simulation shown in (a)-(c), respectively. In order to show
the free surface as close to plug formation as possible, the free surface shown in (f) corresponds to
the simulation shown in (c) but at t = 370.74, which is just past the final time shown in (c). We
note that the model solution cannot be continued all the way to R = 0 due to the inverse powers
and logarithms of R in (22); it is also likely that the simplifying assumptions used in deriving the
model (e.g. negligible inertia) may not be satisfied during the latter stages of plug formation. The
maximum and minimum film thickness for each simulation is shown in figure 6(g). The accelerated

growth for Λ̃ = 0.07 as minR → 0 in finite time is clearly seen.
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Figure 6. (a)-(c) Time snapshots showing the evolution of the free surface for (22)

in a periodic domain with S1 = 0, S3/S2 = 0.35, and a = 1.25. (a) Λ̃ = 0, (b)

Λ̃ = 0.015, (c) Λ̃ = 0.07. The free surface profiles are shown for equal time intervals.
Profiles are shown in a frame of reference moving with the phase speed according
to (33). (d)-(f) Time snapshots at the end of the simulations shown in (a)-(c),
respectively; snapshots are shown inside a tube. For (f), snapshot shown occurs
just after the final snapshot in (c). (g) maxz h(z, t) and minz h(z, t) for simulations
in (a)-(c). Waves flowing down the tube due to gravity are moving in the negative
z-direction.

There appears to be a critical value of Λ̃ above which plug formation occurs. It is likewise the case

that, for fixed Λ̃, there is a critical value of film thickness parameter a above which plug formation
occurs, as has been shown for the no-slip limit of (22) in Camassa et al. (2014); (similarly, for fixed
a, increasing the S3/S2 ratio past a critical value promotes plug formation as in Ogrosky (2021b)).
Thus it appears that in the absence of pressure-driven flow, both slip and increasing film thickness
promote plug formation, consistent with the findings of Liu & Ding (2017).

In the case of no slip, i.e. Λ̃ = 0, it has been shown that the free surface in (22) exhibits self-
similar behavior during the pinch-off process (see e.g. Ding et al., 2019), i.e. where R(z, t) may

be written as (tp − t)1/5F (ζ) with ζ = (z − zp)/(tp − t)1/5, where zp is the axial location of liquid
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Figure 7. (a) minz R(z, t) as a function of time prior to time tp of plug formation

for S1 = 0, S3/S2 = 0.35, a = 1.32, and three values of Λ̃. (b) Solution to (36)
(red line) with solutions to (22) (symbols) shown near the time and location of plug
formation; solutions to (22) have been rescaled using (35).

pinch-off, and tp is the time of pinch-off. This 1/5 scaling law matches the early stages of plug
formation observed in experiments by Pahlavan et al. (2019).

Does slip alter this 1/5 scaling? Following the approach of, e.g., Ding et al. (2019), self-similar
solutions to (22) sought. Substituting

R(z, t) = ∆tλF (ζ), ∆t = tp − t, ζ =
z − zp
∆tγ

, (35)

with λ > 0 and γ > 0 into (22), and retaining only leading order terms in ∆t, produces:

∆t2λ−1F (−λF + γζF ′)

+ S3a
4(1 + 4Λ̃)

[
∆t−λ−2γ

(
−2(F ′)2

F 3
+

F ′′

F 2

)
+∆tλ−4γF (4)

]
= 0. (36)

Balancing these leading order terms produces λ = γ = 1/5 as in the case with no slip; the presence
of slip simply modifies the effective value of S3.

This scaling is confirmed in the numerical solutions found. Figure 7(a) shows the later stages of

plug formation as minR approaches zero in simulations for three values of Λ̃; all three cases exhibit
the 1/5 scaling of the no-slip case. Figure 7(b) shows the profile of the wave close to pinching off
in each of the three simulations. These are overlaid on the self-similar solution profile, which was
found by numerically solving (36).

There is a second way in which model equations like (22) may be used to predict whether plugs
will form. In Camassa et al. (2014) it was shown that turning points in families of traveling wave
solutions serve as a reliable indicator of plug formation in model simulations and experiments in
the case of no slip; this method has been further verified in other studies by Camassa et al. (2016);
Dietze et al. (2020); Ding et al. (2019). This perspective is explored next for (22).

4.2. Traveling Wave Solutions. Since the solutions in figure 6 appear to consist of waves trav-
eling with a relatively fixed profile and speed, we next look for traveling wave solutions to (22).
These solutions will have the form

R(z, t) = Q(Z) (37)
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where Z = z − ct, with c being the wave speed. Substituting (37) into (22) and integrating once,
we get the third-order ordinary differential equation

K = −c

(
Q2

2

)
+ S1

[
− a4

4Q4
+

a2

2Q2
− Λ̃a4

Q4
+

Λ̃a2

Q2

]

+ S2

[
3Q4

8
− Q2a2

2
− Q4

2
ln

(
Q

a

)
− Λ̃a2Q2 +

Λ̃Q4

2

]

+ S3

[(
a4

Q2
+ 3Q2 − 4a2 + 4Q2 ln

(
a

Q

)
+

4Λ̃

Q2
(a2 −Q2)2

)
(Q′ +Q2Q′′′)

]
,

(38)

where primes denote differentiation with respect to Z and K is a constant of integration that
becomes an additional parameter in the problem.

Solutions to (38) may be found using numerical continuation software AUTO (Doedel et al.,
2008) in the following way. Starting with a constant solution, the film thickness a may be varied
until a Hopf bifurcation is reached. The wave speed, c, is a free parameter and the constant of
integration, K, is prescribed using (38). Using the equation (38) exactly as written presents some
numerical challenges, as the bifurcation is a zero-Hopf bifurcation. In order to more easily identify
the bifurcation, a small amount of viscosity, βQ′′, is added to (38). Once we have moved onto the
family of periodic solutions from the Hopf, this viscosity parameter is taken to 0; see, e.g., Camassa
et al. (2021) for more details and a justification of this numerical smoothing procedure.

Families of these periodic solutions may be traced out by varying Λ̃ or a. Figure 8(a) shows
families of traveling wave solutions for S1 = 0, S2 = 1.607, S3 = 0.598, fixed period of 4π, and four

different values of Λ̃. Each family of solutions contains a turning point in the solution family at a
value ac. For a > ac, no traveling wave solutions were found; for a < ac, two traveling wave solutions
were found, one with higher amplitude and one with lower amplitude. The lower-amplitude solu-
tions correspond to the waves seen in the numerical solutions to the evolution equation (22), while
the higher-amplitude solutions do not appear in these solutions. Figure 8(b) shows the solutions

at a = ac for the values of Λ̃ in figure 8(a).
It is important to note that the value of ac does depend on the period size specified when finding

traveling wave solutions. We briefly justify the selection of 4π used here. One reasonable choice
for the period size would be to use the most unstable wavelength, 2

√
2π. However, once the wave

growth in solutions to (22) has saturated, the typical distance from one wave crest to another is
larger than this value. For example, in figure 6(a)-(c), the simulations show 6-7 wave crests within
a 24π domain. The period 4π was used as an approximate average wavelength for these saturated
waves. Other methods could be used, including the approach used by Dietze et al. (2020); see also
Camassa et al. (2016) for discussion of the impact of period size on critical thickness ac without
slip.

These ac values may be taken as an approximate value for the critical film thickness past which

plugs may be expected to form. Increasing Λ̃ results in decreasing ac, consistent with numerical

solutions showing that increasing Λ̃ promotes plug formation. The traveling wave solutions at the
critical film thickness value ac are shown for each of the four families in figure 8(b).

How well does ac approximate the critical thickness required for plug formation to occur in
solutions to the evolution equation (22), and how much do domain length and initial conditions
affect this agreement? To answer this, additional simulations of (22) were conducted for each value

of Λ̃ shown in figure 8(a). In these simulations, the value of a was initially set to be lower than
the critical value ac to ensure no plugs would form. Once the free-surface instability growth had
saturated as a series of traveling waves, the value of a was increased by 0.005, and the simulation
was continued for an additional 1200 time units. After each subsequent 1200 time units, the value
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Figure 8. (a) Families of traveling wave solutions for S1 = 0, S3/S2 = 0.35, period

L = 4π, and four values of Λ̃. Dashed lines indicate critical film thickness parameter
value ac. +’s (◦’s) denote minz R(z, t) in solution to (22) with L = 4π (L = 12π);
see text for details. Shading denotes a values that lie between the critical thickness
found for L = 4π and L = 12π. (b) Traveling wave profiles corresponding to the
critical film thickness ac and slip combinations in (a). (c) Evolution of minz h(z, t)
and maxz h(z, t) for simulations corresponding to black +’s and ◦’s in (a). The value
of a used during each time interval of the simulation is listed near the top of the
plot; see text for details.
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Figure 9. (a) Initial conditions used in two solutions to (22) using a = 1.25, S1 = 0,

S3/S2 = 0.35, Λ̃ = 0.02, and domain length L = 24π. (b) Evolution of minz h(z, t)
(dashed line) and maxz h(z, t) (solid line) for solutions from (a).

of a was further increased by 0.005, with the simulation being allowed to run until minR began

to approach zero, indicating plug formation. For each value of Λ̃, this test was first conducted
with a small domain of length 4π, chosen to match the period of the traveling wave solutions
found in figure 8(a). The test was conducted a second time with larger domain (12π) in order to
briefly explore the impact of domain length on plug formation; see figure 8(c) for the evolution of

maxz h(z, t) and minz h(z, t) for both tests with Λ̃ = 0. For each value of Λ̃, the smaller domain
produces plugs at a value of a that matches the traveling wave turnaround point quite well, while
the larger domain produces plugs at a smaller value of a than the ac identified by traveling wave
solutions. This is due to the formation of plugs occurring from the interactions and mergers of
multiple waves in these longer domain simulations. The shaded areas of figure 8(a) represent the
difference between values of a for which plugs formed in the small- and large-domain tests; the width

of the shaded areas is slightly larger for higher values of Λ̃, suggesting an increased sensitivity to
domain length for higher slip.

As mentioned above, the final state of the solution (plugs or no plugs) can be sensitive to the
initial conditions. This sensitivity is seen only in simulations with large domain and thickness near
but less than ac so that plugs may form due to wave mergers. Figure 9 provides an example of
this dependence of plug formation on initial conditions. Two model solutions were found using

a = 1.25, S1 = 0, S3/S2 = 0.35, and Λ̃ in a domain of length L = 24π. Each initial condition
consisted of the constant free-surface R = 1 perturbed by 20 modes with amplitude and phase shift
chosen randomly; the initial conditions are shown in figure 9(a), and the evolution of maxh and
minh is shown in figure 9(b). Solution 1 displays no plug formation during the first 8000 time
units, while solution 2 displays plug formation prior to S2t = 2000. It is of course possible that
solution 1 will eventually produce a wave merger that results in a plug, though none was seen in the
simulation run here, and the relevance for experiments conducted with tubes of reasonable length
seems minimal.

Before proceeding, a brief discussion of the stability of these traveling waves is given. For the
no-slip case, the traveling wave solutions with higher amplitude, lying on the solution branch with
minR smaller than that at ac, were shown to be unstable (Camassa et al., 2016); the stability
of these waves in the presence of slip is briefly explored next. When a traveling wave solution,
plus a small perturbation, is used as an initial condition in the solver for (22), one of two things
occurs. As the wave travels, the amplitude either grows and minR approaches 0, or the amplitude
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Figure 10. (a) Snapshots from the evolution of a high-amplitude traveling wave

solution with S1 = 0, S3/S2 = 0.35, a = 1.21, and Λ̃ = 0.13. Waves have been
shifted so that the wave crest is in the center of the domain. (b) maxz h(z, t) for
solution shown in (a); ×’s correspond to snapshots shown in (a), dashed lines show
maxZ h(Z) for the two traveling wave solutions identified for these parameter values.

decreases and the wave profile approaches that of the lower amplitude traveling wave solution with
the same parameter values. Figure 10 shows the second case; the evolution of a higher-amplitude

traveling wave solution with noise for S1 = 0, S3/S2 = 0.35, a = 1.21, and Λ̃ = 0.13 is shown in
figure 10(a) with solutions shifted so that the wave crest is always in the center of the domain.
The evolution of maxz h(z, t) is shown in figure 10(b). This second case has also been observed in
the no-slip case (Camassa et al., 2016). These simulations suggest that in both cases, these higher-
amplitude waves are unstable. The stability of the smaller-amplitude waves with no slip was
discussed in Camassa et al. (2021); our simulations here suggest those findings appear unchanged
by slip.

The dependence of ac on slip, ac(Λ̃), is shown in figure 11. For small slip, the critical thickness

value ac decreases rapidly as Λ̃ increases. For large values of Λ̃, this critical thickness ac decreases

very slowly. For example, for the parameter values used in figure 11, when Λ̃ = 200, ac ≈ 1.16.
It is not unreasonable to conjecture that the value of ac approaches some minimum value above

1 as Λ̃ → ∞. This could suggest that there is some small film thickness for which plugs are not
expected to form regardless of slip; exploring this further analytically is, however, a challenging

task as one cannot obtain an explicit formula for ac in terms of Λ̃.

A functional form of ac(Λ̃) valid for small Λ̃ may be found analytically by exploiting the apparent

weak dependence of the profiles in figure 8(b) on Λ̃ as follows. Setting S1 = 0, holding S2 and S3

constant, letting ac = ac(Λ̃), c = c(Λ̃), and K = K(Λ̃), and taking a derivative with respect to Λ̃
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Figure 11. Critical film thickness parameter ac as a function of Λ̃ for S1 = 0,
S2 = 1.607, S3 = 0.568, and period 4π. The solid line represents the tangent line
approximation from (40) which can be used to predict the critical a value for small

Λ̃. The colored triangles correspond to the traveling waves in figure 8(b) with the
same color.
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where terms of O(Λ̃) have been omitted. In addition, the values of c and K for turning point

solutions found numerically at small values of Λ̃ suggest that dc

dΛ̃
and dK

dΛ̃
may also be neglected

in (39) for Λ̃ ≪ 1. The remaining terms are clearly satisfied so long as dac/dΛ̃ = −ac. Solving

this ODE using initial condition ac(0) = ac,0 results in ac = ac,0 exp(−Λ̃). For Λ̃ ≪ 1, this is
well-approximated by

ac(Λ̃) = ac,0(1− Λ̃). (40)

This simple prediction for the critical thickness as a function of slip is shown by the solid line in
figure 11.

Before proceeding, we note that the validity of the model depends on the condition ϵ = κ/R0 ≪ 1,
sometimes referred to as a ‘small-slope’ approximation (as in, e.g., Gauglitz & Radke (1988)), being
satisfied. Since κ is not directly specified, the validity of the model may be checked a posteriori by
ensuring that the model solution satisfied this criteria at all times. This has been done previously
in no-slip cases (see, e.g., Ogrosky (2021b), and was briefly checked here as well. Figure 12 shows
the evolution of maxz |Rz(z, t)| for the two solutions in figure 9(a). For all time in solution 1,
maxz |Rz(z, t)| < 0.3; for solution 2, this value can reach as high as 1.5 in the late stages of plug
formation. While these values attained immediately prior to a plug forming violate the ‘small-slope’
approximation, it has been shown that this long-wave modeling approach produces remarkable
agreement with experiments during the early stages of plug formation; only during the final stages
does the accuracy break down (Pahlavan et al., 2019).

Next, the case where S1 > 0 is considered. In this case, the possibility of plug formation in
the model is eliminated owing to the fixed volume flux of air; see Camassa & Ogrosky (2015) for
more discussion of this point. With both S1 > 0 and S2 > 0, the waves grow and saturate, with
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Figure 12. Evolution of maxz |Rz(z, t)| for solutions from 9(a).

movement up or down the tube depending on the relative magnitude of S1 and S2. In the case
S2 = 0, the waves move strictly up the tube as expected and as shown in 3(a).

For the no-slip case with S2 = 0, it has been shown that as long as the film is thin enough,
the fluid within traveling waves may form a region of recirculation, or ‘trapped core’ of fluid that
effectively rolls along the film substrate; such waves may also be referred to as ‘roll waves’. This
region of recirculation can be distinguished from the underlying substrate by a separatrix present
in a plot of the streamlines. If the film is thicker than some threshold value (which depends on the
value of S1 and S3), traveling wave solutions show streamlines that may be fanned or constricted
but do not form regions of recirculation (Camassa et al., 2012). This topological difference in
streamlines was shown not to be present in the thin-film model of Kerchman (1995), for which
regions of recirculation are present in all solutions explored. This streamline topology can have
consequences for the transport of the film along the tube and the transport of insoluble surfactant
or other particles lying at the free surface, and we explore the impact of slip on streamline topology
next.

The Stokes streamfunction Ψ for a traveling wave solution is defined by

u = −∂zΨ and w − c =
1

r
∂r(rΨ), (41)

where c is the speed of the travelling wave solutions. Using (16) for w, the radial velocity u may be
solved for using the continuity equation (13c) and boundary condition u = 0 at r = a. Integrating
u with respect to z then yields the streamfunction:

Ψ = −cr

2
+

1

4r

(
− S1

R4
+
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2
+
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R2
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S2R
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) (
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a

)
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)
(42)

Figure 13 shows two traveling wave solutions with S1 = 0.1, S2 = 0, S3 = 0.568, a ≈ 1.25, and

different values of Λ̃. For small values of Λ̃, there is a small but distinct region of recirculation

at the wave crest, as in figure 13(b). For larger Λ̃, no such recirculation region is present, as in
figure 13(c). The absence of any region of recirculation was confirmed by comparing the traveling
wave speed c with the velocity of the fluid at the wave crest wc; in figure 13(c), c− wc > 0, while
for figure 13(b), c− wc < 0.

The quantity c − wc is plotted in figure 14 for a variety of solutions with S1 = 0.1, S2 = 0,
S3 = 0.568, and a ≈ 1.25. For no slip, c− wc < 0, indicating a region of recirculation at the wave

crest. For very small Λ̃, c − wc actually decreases, reaching a minimum near Λ̃ = 0.1. For larger

values of Λ̃, c − wc increases, becoming positive near Λ̃ = 0.35, indicating a threshold value for Λ̃
past which recirculation does not occur.

This recirculation was explored for other film thicknesses and parameter values. For films thicker

than some threshold value, there was no recirculation present for any value of Λ̃. Likewise, for the
falling film case of S1 = 0 and S2 > 0, recirculation was not found for the parameter values used,
regardless of slip.
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Figure 13. Traveling wave solutions and streamlines for S1 = 0.1, S2 = 0, S3 =

0.568, and a = 1.25. (a) Λ̃ = 0, c = 0.134; a region of recirculation exists. (b)

Λ̃ = 0.25, c = 0.586; recirculation continues. (c) Λ̃ = 0.40, c = 0.872; no region of
recirculation is present.
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Figure 14. The quantity c − wc plotted as a function of Λ̃ for traveling wave
solutions with S1 = 0.1, S2 = 0, S3 = 0.568, and a ≈ 1.25. wc refers to the fluid
velocity at the wave crest. Positive values of c−wc indicate the existence of a region
of recirculation.

5. Conclusion

A long-wave asymptotic model has been developed and studied for a film coating the interior of a
rigid tube. The cases of the core region consisting of (i) passive air and (ii) pressure-driven airflow
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have been considered. The model was derived using a Navier-slip boundary condition in which the
velocity at the wall is assumed to be proportional to the velocity’s normal derivative at the wall,
with proportionality constant denoted the slip length. This boundary condition also applies to the
flow of a film over a porous boundary under certain simplifying assumptions. In the limit of zero
slip length, previously studied no-slip models are recovered.

Linear stability analysis showed that increasing slip length results in increasing the growth rate
of long-wave disturbances to the free surface. The speed of disturbances is also modified; in many
cases the speed increases, though this depends on the film thickness and other parameter values.

Solutions to the nonlinear evolution equation show that once disturbances have grown beyond
the linear regime, one of two outcomes is possible. In the first case, the growth saturates due to the
nonlinearities present in the model, resulting in a wave train moving along the tube. Increasing the
slip length increases the amplitude of these waves. In the second case, one of the waves undergoes
accelerated growth with the wave crest tending to r = 0 in finite time, indicating the formation of
a liquid plug. These nonlinear simulations indicate that there is a critical film thickness past which
plug formation may be expected; similarly, for some fixed values of film thickness, there is a critical
value of slip length past which plug formation may be expected.

In the case of a falling film with passive air core, families of traveling wave solutions contain a
turning point at this critical thickness; past this thickness, no traveling wave solutions are found.
A simple approximation, which holds for small slip length, was derived for the dependence of this
critical thickness on slip length. It is important to note that whether or not a simulation results in
plug formation can depend on other factors as well, e.g., initial conditions, domain length, etc.

In the case of pressure-driven airflow, it was shown that increasing the slip length can suppress the
formation of a region of circulation within these free-surface waves. This was verified by examining
streamlines in traveling wave solutions and also the difference between wave speed and the speed
of a fluid parcel at the wave crest; it was noted that there was a non-monotonic change in this
difference as slip length increased.
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Quéré, D. 1990 Thin films flowing on vertical fibers. Europhys. Lett. 13 (8), 721–726.
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