
ON MINIMIZERS OF AN ANISOTROPIC LIQUID DROP MODEL

OLEKSANDR MISIATS AND IHSAN TOPALOGLU

Abstract. We consider a variant of Gamow’s liquid drop model with an anisotropic

surface energy. Under suitable regularity and ellipticity assumptions on the surface

tension, Wulff shapes are minimizers in this problem if and only if the surface energy

is isotropic. We show that for smooth anisotropies, in the small nonlocality regime,

minimizers converge to the Wulff shape in C1-norm and quantify the rate of convergence.

We also obtain a quantitative expansion of the energy of any minimizer around the energy

of a Wulff shape yielding a geometric stability result. For certain crystalline surface

tensions we can determine the global minimizer and obtain its exact energy expansion

in terms of the nonlocality parameter.

1. Introduction

In this paper we consider an anisotropic nonlocal isoperimetric problem given by

inf
{
Eγ(F )

∣∣∣ |F | = 1
}

(1.1)

over sets of finite perimeter F ⊂ Rn where

Eγ(F ) :=

∫
∂∗F

f(νF ) dHn−1 + γ

∫
F

∫
F

1

|x− y|α
dxdy

with 0 < α < n and | · | denotes the Lebesgue measure.
The first term in Eγ is the anisotropic surface energy

Pf (F ) :=

∫
∂∗F

f(νF ) dHn−1

defined via a one-homogeneous and convex surface tension f : Rn → [0,∞) that is positive
on Rn \ {0}. Here Hn−1 is the (n − 1)-dimensional Hausdorff measure, and ∂∗F denotes
the reduced boundary of F , which consists of points x ∈ ∂F where the limit νF (x) =

limρ→0
−∇χF (Bρ(x))
|∇χF |(Bρ(x)) exists and has length one. This limit is called the measure-theoretic

outer unit normal of F .
The second term in the energy Eγ is given by the Riesz interactions

V(F ) :=

∫
F

∫
F

1

|x− y|α
dxdy
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for 0 < α < n.
The minimization problem (1.1) is equivalent (via the rescaling γ = m(n+1−α)/n) to the

anisotropic liquid drop model

inf
{
E(E) := Pf (E) + V(E)

∣∣∣ |E| = m
}

(1.2)

introduced by Choksi, Neumayer and the second author in [9] as an extension of the
classical liquid drop model.

Gamow’s liquid drop model, initially developed to predict the mass defect curve and
the shape of atomic nuclei, dates back to 1930 [18]; however, it recently has generated
considerable interest in the calculus of variations community (see e.g. [1, 5, 7, 17, 20,
21, 22, 23] as well as [8] for a review). The version of this model in the language of
the calculus of variations includes two competing forces: an attractive isotropic surface
energy associated with the depletion of nucleon density near the nucleus boundary, and
a repulsive Coulomb energy due to the interactions of positively charged protons. These
two forces are in direct competition. The surface energy prefers uniform, symmetric and
connected domains whereas the repulsive term is minimized by a sequence of sets diverging
infinitely apart. The parameter of the problem (γ in (1.1) or m in (1.2)) sets a length
scale between these competing forces. As such, the liquid drop model is a paradigm for
shape optimization via competitions of short- and long-range interactions and it appears
in many different systems at all length scales.

In the anisotropic extension of the liquid drop model the global minimizer of the surface
energy Pf (E) over sets |E| = m is (a dilation or translation of) the Wulff shape Kf

associated with f (cf. [6, 15, 16]), where

Kf :=
⋂

ν∈Sn−1

{
x ∈ Rn

∣∣x · ν < f(ν)
}
.

Properties of Kf depend on the regularity of the surface tension f .
In the literature two important classes of surface tensions are considered:

• We say that f is a smooth elliptic surface tension if f ∈ C∞(Rn \ {0}) and there
exist constants 0 < λ 6 Λ <∞ such that for every ν ∈ Sn−1,

λ |τ |2 6 ∇2f(ν)[τ, τ ] 6 Λ |τ |2

for all τ ∈ Rn with τ · ν = 0. For such surface tensions, the corresponding Wulff
shape has C∞ boundary and is uniformly convex.
• We say that f is a crystalline surface tension if for some N finite and xi ∈ Rn,

f(ν) = max
16i6N

xi · ν.

For crystalline surface tensions, the corresponding Wulff shape K is a convex
polyhedron.

In the anisotropic liquid drop model (1.2) the competition which leads to an energy-
driven pattern formation is not only between the attractive and repulsive forces, as they
scale differently in terms of the mass m, but there is also a competition between the
anisotropy in the surface energy and the isotropy in the Coulomb-like energy. As shown
in [9, Theorem 3.1], the problem (1.2) admits a minimizer when m is sufficiently small
and fails to have minimizers for large values of m. However, [9, Theorem 1.1] shows
that when f is smooth the Wulff shape Kf is not a critical point of the energy E for
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any m > 0. On the other hand, for particular crystalline surface tensions the authors
prove that the corresponding Wulff shape is the unique (modulo translations) minimizer
for sufficiently small m. This demonstrates a fundamentally interesting situation: the
regularity and ellipticity of the surface tension f determines whether the isoperimetric
set Kf is also a minimizer of the perturbed problem (1.1). As stated in [9], while the
regularity and ellipticity of the surface tension affect typically quantitative aspects of
anisotropic isoperimetric problems, here, due to the incompatibility of the Wulff shape
with the Riesz energies, qualitative aspects of the problem are effected, too.

Motivated by the results in [9], we study qualitative properties of the minimizers of
(1.1) for smooth anisotropies in the asymptotic regime γ → 0, and obtain

• the convergence of the minimizers to the Wulff shape in strong norms, providing
the rate of convergence, and
• an expansion of the energy around the energy of a Wulff shape in terms of γ.

In particular, our first main result shows that the minimizers of Eγ are close to the Wulff
shape in C1-norm in the small γ regime. Further we obtain quantitative estimates on how
much a minimizer F of Eγ differs from the Wulff shape when γ is sufficiently small.

Theorem 1.1. Let f be a smooth elliptic surface tension and F be a minimizer of the
problem (1.1). Let K denote the Wulff shape corresponding to f rescaled so that |K| = 1.
Then we have the following two statements.

(i) For γ > 0 sufficiently small there exists ψ ∈ C1(∂K) such that

∂F =
{
x+ ψ(x)νK(x)

∣∣x ∈ ∂K}
and

|F4K| . ‖ψ‖C1(∂K) . |F4K|1/(n+1).

(ii) For γ > 0 sufficiently small, we have that

|F4K| ' γ.

Combining parts (i) and (ii) of the theorem, we conclude that

γ . ‖ψ‖C1(∂K) . γ
1/(n+1).

Using the elliptic regularity theory, via Schauder estimates on the Euler–Lagrange equa-
tion, implies that ψ → 0 in some C2,β-norm as γ → 0; however, finding the rate of
convergence explicitly in terms of γ seems to be a challenging task. As for quantifying the
convergence rate in stronger norms, adapting arguments from Figalli and Maggi’s work
on the shapes of liquid drops (cf. [13]), it is possible to obtain quantitative convexity
estimates on minimizers F ultimately yielding C2-control on the function ψ via an upper
bound that depends on γ (see Remark 2.6). Although the result above only establishes an
explicit C1-control of the function ψ, our proof relies only on a simple geometric argument
we present in the next section.

Next we show that the energy difference between a minimizer and the Wulff shape scales
as γ2.
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Theorem 1.2. Suppose f is a smooth elliptic surface tension that is not a constant
multiple of the Euclidean distance. Let F be a minimizer of the energy Eγ. Then for γ
sufficiently small,

Eγ(K)− Eγ(F ) ' γ2 (1.3)

where K is the Wulff shape corresponding to f rescaled so that |K| = 1 and translated to
have the same barycenter as F .

Combined with the estimate on the symmetric difference, this expansion also yields a
geometric stability estimate of the form

Eγ(K)− Eγ(F ) > C|F4K|2

for the minimizer F in the small γ regime. We prove Theorems 1.1 and 1.2 in Section 2.
In two dimensions, when the Wulff shape is given by a particular perturbation of a set

that is symmetric with respect to the coordinate axes and lines y = ±x, it is possible
to determine the constant in the lower bound Eγ(Kf ) − Eγ(F ) > C γ2, explicitly. This
result is independent of the regularity of the surface tension f and applies to both smooth
and crystalline cases. Furthermore, when the surface tension is given by f(ν) = 1

2

(
a0|ν ·

e1| + a−10 |ν · e2|
)

for some a0 > 1, we show that the minimizer of Eγ is a rectangle with
dimensions determined explicitly in terms of a0 and γ, and we obtain an expansion of the
energy Eγ of a minimizer in terms of γ and a0 only. We prove these results in Section 3.

Finally, we would like to note that a similar incompatibility occurs also in a nonlocal
isoperimetric problem considered by Cicalese and Spadaro [10] where the authors study
the isotropic version of the energy Eγ (i.e., with f given by the Euclidean distance) on a
bounded domain Ω. Here the incompatibility is due to the boundary effects. As a result
of the boundary effects the isoperimetric region (in this case a ball) is not a critical point
of the nonlocal term, and the authors study the asymptotic properties of the minimizers
in the small γ limit.

Notation. Throughout the paper we use the notation f . g to denote that f 6 Cg for
some constant C > 0 independent of f . We also write f ' g to denote that c g 6 f 6 C g
for constants c, C > 0 independent of f . The constants C we use might change from line
to line unless defined explicitly. Also, when necessary, we emphasize the dependence of
the constants to the parameters. In order to simplify notation we will denote the Wulff
shape by K, suppressing the dependence on the surface tension f .

2. Proofs of Theorem 1.1 and Theorem 1.2

The proof of the first part of Theorem 1.1 relies on a result which is independent of the
optimality of the set F , and is rather a general property of two sets where the boundary
of one of the sets is expressed as a graph over the boundary of the other set. We state
this geometric result as a separate lemma since it might be of interest to readers beyond
its connection to the anisotropic liquid drop model.

Lemma 2.1. Suppose E and F are bounded subsets of Rn with C1 boundaries such that

∂F =
{
x+ ψ(x)νE(x)

∣∣x ∈ ∂E}
for some function ψ ∈ C1(∂E).
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(i) Then
1

Hn−1(∂E)
|E4F | 6 ‖ψ‖C1(∂E).

(ii) If, in addition, ∂E ∈ C2 and F is convex, then there exits a constant C > 0,
depending only on the maximal principle curvature κ and the perimeter of E (see
(2.3) for the explicit dependence) such that

‖ψ‖C1(∂E) 6 C|E4F |
1

n+1 . (2.1)

Remark 2.2. In fact, the simple estimate below shows that the symmetric difference can
be controlled by the C0-norm of ψ. Namely, |E4F | 6 Hn−1(∂E) ‖ψ‖C0(∂E).

Proof. The proof of (i) is straightforward:

|E4F | =
∫
∂E
|ψ(x)| dHn−1 6 ‖ψ‖C1(∂E)Hn−1(∂E).

To show (ii), let z∗ = (z∗1 , ..., z
∗
n) = arg max∂E |∇ψ(x)|. Suppose z∗ ∈ ∂E ∩ ∂F . Further,

assume that in some neighborhood Uz∗ ⊂ Rn there exist f, g : Rn−1 → R such that

∂F =
{
x = (x1, ..., xn) ∈ Uz∗

∣∣xn = f(x1, ..., xn−1)
}

and

∂E =
{
x = (x1, ..., xn) ∈ Uz∗

∣∣xn = g(x1, ..., xn−1)
}
.

Since the mean curvature of ∂E is bounded, we can choose the neighborhood Uz∗ such
that |Uz∗ | > cE > 0 for some constant cE depending only on κ, the maximal principle
curvature of ∂E. Finally, without loss of generality, we may choose an appropriate rotation
and translation to have z∗ = 0,

g(0) = f(0) = 0 and ∇f(0) = 0. (2.2)

In this case

max
∂E
|∇ψ(x)| = |∇g(0)|.

Denote x̃ := (x1, ..., xn−1) and Ũ0 =
{
x̃ ∈ Rn−1 : (x̃, 0) ∈ U0

}
. If we expand g in the

neighborhood Ũ0 of 0, we get

g(x̃) = ∇g(0) · x̃+
1

2
x̃ · ∇2g(0) · x̃T + o(|x̃|2)

Furthermore x̃ · ∇2g(0) · x̃T > −c2κ|x̃|2, where cκ > 0 depends only on κ. Hence in Ũ0 we
have

g(x̃) > ∇g(0) · x̃− c2κ|x̃|2 =
|∇g(0)|2

4c2κ
−
∣∣∣∣cκx̃− ∇g(0)

2cκ

∣∣∣∣2
On the other hand, due to the convexity of F , we have f(x̃) 6 0 in Ũ0. Therefore,

|E4F | >
∫
Ũ0

|g(x̃)− f(x̃)| dHn−1x̃ >
∫
Ũ0∩{g(x̃)>0}

g(x̃) dHn−1x̃

>
∫
Ũ0∩

{∣∣∣cκx̃−∇g(0)2cκ

∣∣∣26 |∇g(0)|2
4c2κ

}
(
|∇g(0)|2

4c2κ
−
∣∣∣∣cκx̃− ∇g(0)

2cκ

∣∣∣∣2
)
dHn−1x̃
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=
1

cn−1κ

∫
Ũ0∩

{
|ỹ|26 |∇g(0)|

2

4c2κ

}( |∇g(0)|2

4c2κ
− |ỹ|2

)
dHn−1ỹ

=
cE ωn−1

cn−1κ

(
|∇g(0)|

2cκ

)n+1

− (n− 1)
cEωn−1

cn−1κ

∫ |∇g(0)|
2cκ

0
rn dr

=
cE ωn−1|∇g(0)|n+1

(n+ 1)2nc2nκ
.

If z∗ ∈ ∂E \ ∂F , on the other hand, we may again choose an appropriate rotation and
translation so that z∗ = 0; however, now the functions f and g in (2.2) satisfy

g(0) = cg, f(0) = 0 and ∇f(0) = 0.

This, in turn, implies that g(x̃) > cg + |∇g(0)|2
4c2κ

−
∣∣∣cκx̃− ∇g(0)2cκ

∣∣∣2, and estimating as above

we get

|E4F | > |cg|cE +
cE ωn−1|∇g(0)|n+1

(n+ 1)2nc2nκ
>
cE ωn−1|∇g(0)|n+1

(n+ 1)2nc2nκ
.

Thus

max
∂E
|∇ψ(x)| 6

(
2nc2nκ (n+ 1)

cE ωn−1

) 1
n+1

|E4F |
1

n+1 .

Under the assumption that ψ(0) = 0, we have

max
∂E
|ψ(x)| 6 max

∂E
|∇ψ(x)|Hn−1(∂E),

hence altogether

‖ψ‖C1(∂E) 6 C |E4F |
1

n+1

where

C :=
(
1 +Hn−1(∂E)

)(2nc2nκ (n+ 1)

cE ωn−1

) 1
n+1

(2.3)

is independent of F . �

Remark 2.3. The constants cκ and cE differ from the actual maximal principle curvature
of ∂E by a factor, proportional to (1 + |∇g(0)|2)3/2.

Remark 2.4. The inequality (2.1) holds true for any C2 smooth set F , not necessarily
convex. However, in this case, the constant C in (2.3) will depend on the principle cur-
vatures of both F and E. In our case, we will apply the lemma in the situation, where
the curvature of E is known while the curvature of F is not known a priori, hence the
convexity of F is crucial.

For a smooth elliptic surface tension f the first variation of Pf (E) with respect to a
variation generated by X ∈ C1

c (Rn,Rn) is given by

δPf (E)[X] =

∫
∂∗E

div∂
∗E
(
∇f ◦ νE

)
X · νE dHn−1.
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Here div∂
∗E denotes the tangential divergence along ∂∗E. The function Hf

E : ∂∗E → R
defined by Hf

E = div∂
∗E
(
∇f ◦νE

)
is called the anisotropic mean curvature of the reduced

boundary of E. The first variation of V(E) with respect to a variation generated by
X ∈ C1

c (Rn,Rn), on the other hand, is given by

δV(E)[X] =

∫
∂∗E

vE(x)X · νE dHn−1 ,

with vE(x) =
∫
E |x− y|

−α dy.
We say that a set E is a critical point of (1.1) if δ(Pf (E) + γ V(E))[X] = 0 for all

variations with
∫
∂∗E X · νE dH

n−1 = 0, i.e., variations that preserve volume to first order.
Hence, a volume-constrained critical point E of (1.1) satisfies the Euler-Lagrange equation

Hf
E(x) + vE(x) = λ for all x ∈ ∂∗E, (2.4)

where the constant λ is the Lagrange multiplier associated with the volume constraint
|E| = 1.

In order to obtain the rate of the L1-convergence of the minimizing sets in terms γ, we
will utilize the following lemma, which provides a lower bound on the energy deficit and
is also a fundamental part of the proof of Theorem 1.2.

Lemma 2.5. Suppose f is a smooth elliptic surface tension that is not a constant multiple
of the Euclidean distance. Let F be a minimizer of the energy Eγ. Then for γ sufficiently
small,

Eγ(K)− Eγ(F ) > Cγ2 (2.5)

where K is the Wulff shape corresponding to f rescaled so that |K| = 1 and translated to
have the same barycenter as F and the constant C depends only on f , α, and d.

Proof. First note that since f is not a multiple of the Euclidean distance the corresponding
Wulff shape K is not a ball but since K minimizes the perimeter functional its anisotropic

mean curvature Hf
K is constant on ∂K. On the other hand, characterization results [9,

Theorem 1.3] and [19, Theorem 4.2.] state that the only sets E for which the Riesz
potential vE is constant on ∂E are given by balls. Hence, K does not satisfy (2.4), and
therefore it is not a critical point of the energy Eγ for any γ. This implies that there exists
a function ϕ : ∂K → R such that the first variation of V in the normal direction νK is
negative for small perturbations by the function ϕ. That is,

µ2(K) := δV(K) = [ϕνK ] =
d

dε
V(Kϕ,ε)

∣∣∣
ε=0

< 0

where Kϕ,ε := {x+ εϕ(x)νK(x)
∣∣x ∈ K}.

Now, let

µ1(K) :=

∫
∂K

D2f(∇ϕ,∇ϕ)− ϕ2tr(D2fA2
K) dHn−1

where AK denotes the second fundamental form of ∂K. Then µ1(K) = δ2Pf (K)[ϕνK ],
the second variation of Pf at K (cf. [11, Theorem 4.1]). Since f is uniformly elliptic by
assumption, using [24, Lemma 4.1] and arguing as in the proof of [24, Proposition 1.9]
(where we also use that barK = barF with bar denoting the barycenter of a set), we have
that

µ1(K) > C
∫
∂K
|∇ϕ|2 dHn−1 > 0.
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Using the minimality of F and expanding the energies in terms of ε we obtain

Eγ(K)− Eγ(F ) > Eγ(K)− Eγ(Kϕ,ε)

= Pf (K)− Pf (Kϕ,ε) + γ
(
V(K)− V(Kϕ,ε)

)
= −µ2(K)γ ε− µ1(K)

2
ε2 − γ o(ε).

Optimizing in ε we let ε =
(
− µ2(K)/µ1(K)

)
γ. Then Eγ(K) − Eγ(F ) > Cγ2 for some

constant C > 0; hence, we obtain the lower bound as claimed. �

Another important ingredient in the proof of the theorem is the regularity of quasimin-
imizers of the surface energy Pf . We say that F is a q-volume-constrained quasiminimizer
of Pf if

Pf (F ) 6 Pf (E) + q|F4E| for all E with |E| = |F |.
We are now ready to prove the theorem.

Proof of Theorem 1.1. We start by noting that the nonlocal functional V is Lipschitz con-
tinuous with respect to the symmetric difference. To see this let α ∈ (0, n) and let
vF : Rn → R denote the Riesz potential of F given by vF (x) =

∫
F |x − y|

−α dy. Hence,

V(F ) =
∫
F vF (x) dx. Let r = ω

−1/n
n , where ωn denotes the volume of the unit ball in Rn.

Then

‖vF ‖L∞(Rn) 6 ‖vBr(0)‖L∞(Rn) = vBr(0)(0) =
nω

1−(n−α)/n
n

n− α
.

In fact, by [25, Lemma 3] and [5, Proposition 2.1], vF is Hölder continuous with

‖vF ‖Ck,β(Rn) 6 C(n, |F |, k, β)

for k = bn− αc and β ∈ (0, 1) with k + β < n− α.
A direct calculation shows that

V(E)− V(F ) =

∫
Rn

∫
Rn

χE(x)χE(y)− χF (x)χF (y)

|x− y|α
dxdy

=

∫
Rn
vE(y)(χE(y)− χF (y)) dy +

∫
Rn
vF (x)(χE(x)− χF (y)) dx

6
2nω

α/n
n

n− α
|E4F |.

Hence, for any E, F ⊂ Rn with |E| 6 |F | the functional V is Lipschitz continuous with
respect to the symmetric difference with Lipschitz constant given by

cn,α :=
2nω

α/n
n

n− α
.

Now, for any minimizer F with |F | = 1 of the energy Eγ , we have that

Pf (F ) 6 Pf (E) + γ
(
V(E)− V(F )

)
6 Pf (E) + γcn,α|E4F |

for any competitor E with |E| = 1. Thus F is a γcn,α-volume-constrained quasiminimizer
of the surface energy Pf . Classical arguments and regularity results for quasiminimizers
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in the literature (see e.g. [2, 3, 4, 12]) imply that for γ sufficiently small ∂F is a C2,β-
hypersurface for all β ∈ (0, β0) with β0 := min{1, n − α}. In fact, ∂F can locally be
written as a small C2,β-graph over the boundary of the Wulff shape K of mass 1, and F
is uniformly convex (see also [9, Theorem 2.2] for a precise statement of this regularity
result). Therefore, there exists ψ ∈ C1(∂K) such that

∂F =
{
x+ ψ(x)νK(x)

∣∣x ∈ ∂K}.
Since both F and K are uniformly convex, we can apply Lemma 2.1 to conclude that

|F4K| . ‖ψ‖C1(∂K) . |F4K|1/(n+1).

This establishes part (i) of the theorem.

In order to prove the second part, first we note that by the quantitative Wulff inequality
[14, Theorem 1.1],

Pf (F )− Pf (K) > C |F4K|2

for some constant C > 0 depending only on n and K. Then, by minimality of F and by
Lipschitzianity of V, we get

|F4K|2 6 C
(
Pf (F )− Pf (K)

)
6 Cγ

(
V(K)− V(F )

)
6 Cγ |F4K|.

Hence, |F4K| 6 Cγ, and we obtain the upper bound in part (ii).
In order to prove the lower bound, first suppose that |Pf (K)−Pf (F )| � γ2 for any γ >

0. Note that V(K)− V(F ) > Cγ for some C > 0 since otherwise γ−1k
(
V(K)− V(F )

)
→ 0

along a subsequence γk, which would imply that Eγ(K) − Eγ(F ) = o(γ2) and this would
contradict the estimate (2.5). Therefore, there exists a constant C > 0 such that

Cγ2 6
(
Pf (K)− Pf (F )

)
+ γ

(
V(K)− V(F )

)
.

Since K minimizes the surface energy Pf , again using the Lipschitzianity of V, we can
estimate the right-hand side by

γ
(
V(K)− V(F )

)
6 Cγ |F4K|.

Combining these two estimates yields |F4K| > Cγ.
If Pf (F )−Pf (K) > Cγ2, on the other hand, then using minimality of F as above yields

Cγ2 6 Pf (F )− Pf (K) 6 Cγ
(
V(K)− V(F )

)
6 Cγ |F4K|.

Hence, we again obtain the lower bound |F4K| > Cγ, and combined with the upper
bound this concludes the proof of the theorem. �

Remark 2.6 (Quantification of convexity). For f ∈ C∞(Rn \ {0}) and α ∈ (0, n− 1) it is
possible to adapt the arguments in [13, Theorem 2 and Remark 2] to include the nonlocal
Riesz kernel V as the perturbation of Pf , and obtain quantitative estimates in terms of γ
regarding the convexity of F . Namely, one can prove that

max
∂F
|∇2f(νF )∇νF − IdTx∂F | 6 Cγ

2n
(n+2)(n+1−α) ,
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where ∇νF denotes the second fundamental form of F . This, ultimately, provides a
quantitative estimate on ‖ψ‖C2(∂F ) in terms of γ.

We finish this section with an expansion of the energy of a minimizer of Eγ around the
energy of the Wulff shape corresponding to smooth elliptic anisotropies that are not given
by the Euclidean distance. The key idea here is that for such surface tensions the Wulff
shape is not a critical point (in the sense of first variations by smooth perturbations) of
the nonlocal part V. Therefore, the energy expansion does not vanish at the first order,
and contribution at order γ is present.

Proof of Theorem 1.2. We will prove this theorem in two parts. The upper bound follows
by the Lipschitzianity of the nonlocal term V and the result of Theorem 1.1(ii). Namely,
for sufficiently small γ we have

Eγ(K)− Eγ(F ) 6 γ
(
V(K)− V(F )

)
6 γ C|F4K| 6 Cγ2.

The lower bound, on the other hand, follows directly from Lemma 2.5. �

3. Explicit Constructions in Two Dimensions

For certain surface tensions in two dimensions a constant in the lower bound of the
expansion (1.3) can be computed explicitly by a particular choice of small perturbations
for which the first variation of the nonlocal part is negative. In order to determine these
constants quantitatively, we consider one dimensional transformations of the Wulff shape.
We will denote by Ea the one-dimensional stretching of any set E ⊂ R2 with barycenter
zero by a factor a > 0, i.e.,

Ea :=
{(x

a
, ay
)
∈ R2

∣∣∣ (x, y) ∈ E
}
. (3.1)

Our first result gives an explicit lower bound of the energy expansion when the Wulff
shape is such a transformation of a diagonally symmetric set. Examples of such symmetric
sets include sets with smooth boundaries as well as regular polygons such as octagons,
and they can be written as Wulff shapes of functions which possess dihedral symmetry.
That is, if D4 denotes the set of eight matrices in the dihedral group, then we will consider
functions f : R2 → R satisfying

f(Ax) = f(x) for all A ∈ D4 and x ∈ R2. (3.2)

We also note that the proposition below does not make any assumptions on the regularity
of the surface tension f , and applies to both the smooth and crystalline cases.

Proposition 3.1. Let f : R2 → R be a surface tension (either smooth elliptic or crys-
talline) satisying (3.2). Let

fa(x1, x2) = f(ax1, x2/a) for any a > 0,

and let Ka0 be the Wulff shape corresponding to fa0 for some a0 > 0. Then for any
minimizer F of the energy Eγ defined via the surface tension fa0, and for γ sufficiently
small, we have

Eγ(Ka0)− Eγ(F ) > C γ2
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where the constant C is determined explicitly in terms of the second variation of Pfa0 and
the first variation of V around Ka0.

Proof. Let K be the Wulff shape corresponding to the function f . Since f satisfies (3.2),
K is symmetric with respect to the rotations and reflections in D4. The symmetry of K
implies Eγ(Ka0) = Eγ(K1/a0); hence, without loss of generality, we can take a0 > 1.

For any fa let Kfa be the corresponding Wulff shape. We claim that the set Kfa equals
Ka where Ka is obtained from K via the transformation (3.1). Since the sets Kfa and
Ka are convex it suffices to show that the boundary is mapped to the boundary. To see
this, for any θ ∈ [−π, π] \ {±π/2}, let φ = arctan(a2 tan θ), and φ = arccot(a−2 cot θ) if
θ = ±π/2. Then we have

cosφ =
a−1 cos θ√

a−2 cos2 θ + a2 sin2 θ
and sinφ =

a sin θ√
a−2 cos2 θ + a2 sin2 θ

.

This yields,

∂Ka =
⋂

θ∈[−π,π]

{
(x, y) ∈ R2 : a−1x cos θ + ay sin θ = f(cos θ, sin θ)

}
=

⋂
θ∈[−π,π]

{
(x, y) ∈ R2 :

a−1x cos θ√
a−2 cos2 θ + a2 sin2 θ

+
ay sin θ√

a−2 cos2 θ + a2 sin2 θ

= f

(
cos θ√

a−2 cos2 θ + a2 sin2 θ
,

sin θ√
a−2 cos2 θ + a2 sin2 θ

)}
=

⋂
φ∈[−π,π]

{
(x, y) ∈ R2 : x cosφ+ y sinφ = f(a cosφ, a−1 sinφ)

}
=

⋂
φ∈[−π,π]

{
(x, y) ∈ R2 : x cosφ+ y sinφ = fa(cosφ, sinφ)

}
= ∂Kfa .

For any a0, let Ka0 be the Wulff shape determined by the surface tension fa0 . Then for
any a close to a0 the perimeter can be expanded as

Pf (Ka) = Pf (Ka0) +
µ1(Ka0)

2
(a− a0)2 +O

(
(a− a0)3

)
(3.3)

where

µ1(Ka0) := d2/da2Pf (Ka)
∣∣
a=a0

.

Note that d/daPf (Ka)
∣∣
a=a0

= 0 since Ka0 is the corresponding Wulff shape; hence, it is a

critical point. Moreover, as both Ka0 and Ka are convex and perturbations of K, in two
dimensions they intersect at at most four points. Hence, using at most four functions, it is
possible to express ∂Ka locally as a graph over ∂Ka0 . Therefore, arguing as in the proof
of Theorem 1.2 we get that µ1(Ka0) > 0.

On the other hand, expanding the nonlocal term, we get

V(Ka) = V(Ka0) + µ2(Ka0)(a− a0) +O
(
(a− a0)2

)
(3.4)

where

µ2(Ka0) :=
d

da
V(Ka)

∣∣
a=a0

.
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In order to explicitly evaluate the first variation of the nonlocal energy with respect to
these special perturbations, we introduce the change of variables x̃i = xi/a and ỹi = yi/a
for i = 1, 2. This yields

V(Ka) =

∫
K

∫
K

(
a2(x̃1 − x̃2)2 + a−2(ỹ1 − ỹ2)2

)−α
2
dx̃1dx̃2dỹ1dỹ2.

Hence,

µ2(Ka0) = − α
a0

∫
K

∫
K

a20(x̃1 − x̃2)2 − a
−2
0 (ỹ1 − ỹ2)2(

a20(x̃1 − x̃2)2 + a−20 (ỹ1 − ỹ2)2
)1+α

2

dx̃1dx̃2dỹ1dỹ2.

Changing the variables once again, we get

µ2(Ka0) = − α
a0

∫
Ka0

∫
Ka0

(x1 − x2)2 − (y1 − y2)2(
(x1 − x2)2 + (y1 − y2)2

)1+α
2

dx1dx2dy1dy2.

This show that µ2(Ka0) < 0 due to the fact that the deformation of K into Ka0 stretches
the domain in the x-direction, hence increasing the first term in the integral, and at the
same time shrinks it in the y-direction, thus decreasing the second term in the integral.

Referring back to the expansions (3.3) and (3.4), there exists two positive constants C1

and C2 such that

Eγ(Ka) 6 Eγ(Ka0) +
1

2
µ1(Ka0) (a− a0)2 + γµ2(Ka0) (a− a0) +C1(a− a0)3 + γC2(a− a0)2.

Optimizing in (a− a0) we let

a− a0 = −µ2(Ka0)

µ1(Ka0)
γ

and note that the coefficient is positive since µ2(Ka0) < 0. Then using the fact that F is
a minimizer, we get

Eγ(F ) 6 Eγ(Ka) 6 Eγ(Ka0)− µ22(Ka0)

4µ1(Ka0)
γ2 +

(
C2

µ22(Ka0)

4µ21(Ka0)
− C1

µ32(Ka0)

8µ31(Ka0)

)
γ3

6 Eγ(Ka0)− µ22(Ka0)

8µ1(Ka0)
γ2

for γ > 0 sufficiently small. Hence,

Eγ(Ka0)− Eγ(F ) >
µ22(Ka0)

8µ1(Ka0)
γ2

with the constant depending only on the set K (that is, on the surface tension f) and
a0. �

Remark 3.2 (More general sets). The proposition above can be stated for more general
Wulff shapes which are not necessarily perturbations via (3.1) of a set symmetric with
respect to the dihedral group D4. In fact, a sufficient condition on a set S for the above
proof to work is that∫

S

∫
S

(x1 − x2)2 − (y1 − y2)2(
(x1 − x2)2 + (y1 − y2)2

)1+α
2

dx1dx2dy1dy2 6= 0.
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Sets considered in the above proposition are S = Ka0 where K can be a disk, square,
regular octagon, etc. As mentioned before, the map K → Ka0 for a0 6= 1 is stretching
(shrinking) the set K in x direction while shrinking (stretching) the set in y direction, and
is one of the examples of the perturbation for which

d

da0
V(Ka0)

∣∣∣
a0=1

6= 0.

We conjecture that one can perform a similar shrinking/stretching deformation K → K̃a0

along some direction ν such that

d

da0
V(K̃a0)

∣∣∣
a0=1

6= 0.

for any K different from a ball.

Remark 3.3 (The constants µ1(Ka0) and µ2(Ka0)). While approximate values of µ1(Ka0)
and µ2(Ka0) can be found numerically, finding their exact values analytically is a challeng-
ing task. Although the perturbation of the Wulff shape is given by a simple transformation,
determining the exact value of µ1 would require an explicit formula for the surface tension
f corresponding to K in order to write f(νKa) in terms of f(νK).

For the constant µ2, on the other hand, we can derive estimates in different a0 regimes,
using the properties of the set K. We list these estimates here.

1. For a0 � 1, we have

µ2(Ka0) = − α

a1+α0

∫
K

∫
K

dx1dx2dy1dy2
(x1 − x2)α

+ o(a
−(1+α)
0 ).

Hence, lima0→∞ µ2(Ka0) = 0.

2. Note that

µ2(K) = −α
∫
K

∫
K

(x1 − x2)2 − (y1 − y2)2(
(x1 − x2)2 + (y1 − y2)2

)1+α
2

dx1dx2dy1dy2.

Since both the denominator of the above integral and the set K is symmetric with
respect to swapping the variables xi and yi, we get that µ2(K) = 0. Hence, K is a
critical point of V with respect to this special class of perturbations.

3. For a0 close to 1,

µ2(Ka0) =
d

da
µ2(Ka)

∣∣∣
a=1

(a0 − 1) +O(a0 − 1)2

where

d

da
µ2(Ka)

∣∣
a=1

= −2α

∫
K

∫
K

−α
(
(x1 − x2)4 + (y1 − y2)4

)
+ (4 + α)(x1 − x2)2(y1 − y2)2(

(x1 − x2)2 + (y1 − y2)2
)2+α/2 dx1dx2dy1dy2
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4. We may estimate µ2(Ka0) and d
daµ(Ka)

∣∣
a=1

independently of K. Suppose K is an
arbitrary convex set which is symmetric with respect to the lines y = ±x, such that
∂K passes through (2p, 0) for some p > 0. Then

Smin ⊂ K ⊂ Smax

where Smax = [−2p, 2p]× [−2p, 2p], and Smin = [−p, p]× [−p, p] (see Figure 1).

S

S

K
min

max

2

2

-2

-2

p

pp

p

-p

-p

p

p

Figure 1. For any Wulff shape K which is convex and has 8-fold symmetry, we can

find squares Smin and Smax as depicted above.

Moreover,∫
Smax

∫
Smax

a20(x1 − x2)2(
a20(x1 − x2)2 + a−20 (y1 − y2)2

)1+α
2

dx1dx2dy1dy2

>
∫
K

∫
K

a20(x1 − x2)2(
a20(x1 − x2)2 + a−20 (y1 − y2)2

)1+α
2

dx1dx2dy1dy2

>
∫
Smin

∫
Smin

a20(x1 − x2)2(
a20(x1 − x2)2 + a−20 (y1 − y2)2

)1+α
2

dx1dx2dy1dy2

= 2α−4
∫
Smax

∫
Smax

a20(x1 − x2)2(
a20(x1 − x2)2 + a−20 (y1 − y2)2

)1+α
2

dx1dx2dy1dy2.

Analogously,∫
Smax

∫
Smax

a−20 (y1 − y2)2(
a20(x1 − x2)2 + a−20 (y1 − y2)2

)1+α
2

dx1dx2dy1dy2

>
∫
K

∫
K

a−20 (y1 − y2)2(
a20(x1 − x2)2 + a−20 (y1 − y2)2

)1+α
2

dx1dx2dy1dy2

> 2α−4
∫
Smax

∫
Smax

a−20 (y1 − y2)2(
a20(x1 − x2)2 + a−20 (y1 − y2)2

)1+α
2

dx1dx2dy1dy2.
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Therefore,

− α
a0

∫
Smax

∫
Smax

2α−4a20(x1 − x2)2 − a
−2
0 (y1 − y2)2(

a20(x1 − x2)2 + a−20 (y1 − y2)2
)1+α

2

dx1dx2dy1dy2 > µ2(Ka0)

> − α
a0

∫
Smax

∫
Smax

a20(x1 − x2)2 − 2α−4a−20 (y1 − y2)2(
a20(x1 − x2)2 + a−20 (y1 − y2)2

)1+α
2

dx1dx2dy1dy2

Similar upper and lower bounds can be found for d
daµ2(Ka)

∣∣
a=1

as well.

When the Wulff shape is given by a rectangle in two dimensions, due to a rigidity
theorem by Figalli and Maggi, we obtain a quantitative description of the minimizers as
well as an asymptotic expansion of its energy in terms of γ and the Wulff shape.

Proposition 3.4. Let S = [−1/2, 1/2]× [−1/2, 1/2] be the square of area 1. For a0 > 1,
let f(ν) = 1

2

(
a0|ν ·e1|+a−10 |ν ·e2|

)
be the surface tension whose corresponding Wulff shape

is Sa0 obtained via the transformation (3.1). Then there exists γ∗ > 0 such that for γ < γ∗
any minimizer of Eγ is a rectangle Sa where

a = a0 −
µ2(a0)a

2
0

2
γ (3.5)

and

Eγ(Sa) = Eγ(Sa0)−
(µ2(a0)a0

2

)2
γ2

+

((µ2(a0)a0
2

)3
+
µ22(a0)µ3(a0)a

4
0

8

)
γ3 + o(γ3) (3.6)

with µ2(a0) = d
daV(Sa)

∣∣
a=a0

and µ3(a0) = d2

da2
V(Sa)

∣∣
a=a0

.

Proof. Let F be a minimizer of Eγ . As shown in the proof of Theorem 1.1 above, for γ
sufficiently small, F is a γcn,α-volume-constrained quasiminimizer of the surface energy
Pf . Then, by the two dimensional rigidity theorem [13, Theorem 7] of Figalli and Maggi,
which states that if f is a crystalline surface tension then any q-volume-constrained quasi-
minimizer with sufficiently small q is a convex polygon with sides aligned with those of
the Wulff shape, we get that F is a rectangle with side parallel to Sa0 . Thus, there exists
γ∗ > 0, such that for γ < γ∗ we have F = Sa for some a > 1.

In order to find the optimal scaling a, we expand the perimeter and the nonlocal term
around a0 and get

Eγ(Sa) = Eγ(Sa0) +
1

a20
(a− a0)2 + γµ2(a0)(a− a0) +

γ

2
µ3(a0)(a− a0)2−

1

a30
(a− a0)2 + · · · .

Optimizing at the second-order (i.e., the second and third terms in the expansion above)
yields, as before,

a− a0 = −µ2(a0)a
2
0

2
γ,

and we obtain (3.5). Plugging this back into Eγ(Sa) we get (3.6), i.e., an exact expansion
of the energy of a minimizer in γ. �



16 OLEKSANDR MISIATS AND IHSAN TOPALOGLU

Remark 3.5. While we cannot determine the constant γ∗ explicitly, the expansion (3.6)
yields an explicit upper bound on γ∗. Namely Eγ(Sa) < Eγ(Sa0) implies that

γ <
2(µ2(a0)a0)

2

(µ2(a0)a0)3 + µ22(a0)µ3(a0)a
4
0

.
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