AGGREGATION-DIFFUSION TO CONSTRAINED INTERACTION:
MINIMIZERS & GRADIENT FLOWS IN THE SLOW DIFFUSION LIMIT

KATY CRAIG AND IHSAN TOPALOGLU

ABSTRACT. Inspired by recent work on minimizers and gradient flows of constrained inter-
action energies, we prove that these energies arise as the slow diffusion limit of well-known
aggregation-diffusion energies. We show that minimizers of aggregation-diffusion energies con-
verge to a minimizer of the constrained interaction energy and gradient flows converge to a
gradient flow. Our results apply to a range of interaction potentials, including singular at-
tractive and repulsive-attractive power-law potentials. In the process of obtaining the slow
diffusion limit, we also extend the well-posedness theory for aggregation-diffusion equations
and Wasserstein gradient flows to admit a wide range of nonconvex interaction potentials. We
conclude by applying our results to develop a numerical method for constrained interaction
energies, which we use to investigate open questions on set valued minimizers.
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1. INTRODUCTION

Nonlocal interactions arise throughout the natural world, from collective dynamics in biolog-
ical swarms to vortex motion in superconductors and gravitational interactions among stars. In
each case, agents experience pairwise attractive or repulsive forces, and these pairwise interac-
tions are often coupled with additional repulsive effects, such as diffusion or a height constraint,
which penalize accumulations. The simplest mathematical model for nonlocal interactions and
diffusion is the aggregation-diffusion equation,

op—V - (VK xp)p) =Ap", K:R'=R, m>1,

where the interaction potential K governs the pairwise interactions and the diffusion exponent
m > 1 controls the strength at which diffusion is felt at different heights of the density p.
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Likewise, nonlocal interactions coupled with a height constraint can be heuristically modeled
by the constrained aggregation equation

Op =V - (VK *p)p) =0 if p <1,
p < 1 always,

where, again, K : R? — R is the interaction potential. We note that this equation is merely
a heuristic partial differential equation, as we do not specify the sense in which the height
constraint p < 1 is enforced. We provide a rigorous formulation below.

Both the aggregation-diffusion equation and constrained aggregation equation have gradient
flow structures with respect to the 2-Wasserstein metric. The aggregation-diffusion equation
is formally the gradient flow of the sum of an interaction energy and Rényi entropy

1 1 . ' .
(11)  Em(p) = 2//K(wy)p($)p(y)dwdy+m_1/p(w) doz  if pe L™(RY),
+o0

otherwise,

and the constrained aggregation equation can be rigorously posed as the gradient flow of the
constrained interaction energy

1 _ N
(1.2) Eo(p) = 2//K(ff—y) plx)p(y)dedy  if p € L(RY) and [p)le < 1,
+00

otherwise.

Over the past fifteen years, there has been significant work on aggregation-diffusion equa-
tions, analyzing dynamics of solutions, asymptotic behavior, and minimizers of the energy
E.. |§|, The vast majority of the literature has
considered one of two choices of interaction potential: either purely attractive power-laws or
repulsive-attractive power-laws,

(1.3) K(z)=l|z|’/p or K(z)=|z|/q—|z|P/p for 2—d<p<q<2, ¢>0,

with the convention that |z|°/0 = log(|z|). For the purely attractive case, the literature has
largely studied the competition between the attraction parameter p and the diffusion exponent
m, along with the effects this competition has on properties such as global existence of solutions
or finite time blowup; see ,,,. For the repulsive-attractive case, the
requirement p < g ensures that the nonlocal interactions are repulsive at short length scales and
attractive at long length scales. This competition between short-range and long-range effects
leads to rich pattern formation in both the steady states of solutions and the minimizers of
the corresponding energy E,,; see [|§|,.

More recently, several works have also considered the constrained aggregation equation and
minimizers of the constrained interaction energy E.,. Minimizers of E,, are directly related
to a shape optimization problem introduced by Burchard, Choksi, and the second author |20]:
given a repulsive-attractive power-law interaction potential K, as in equation ,

1
(1.4) minimize E(Q) = 5 // K(z —y)dzdy over sets Q C R? of volume M.
QJQ

Competition between the attraction parameter ¢ and the repulsion parameter p in the definition
of K determines existence, nonexistence, and qualitative properties of minimizers, providing
a counterpoint to the well-studied nonlocal isoperimetric problem. (See for a survey.)
Burchard, Choksi, and the second author showed that the shape optimization problem admits
a solution if and only if the constrained interaction energy E., admits a set valued minimizer,
i.e., a minimizer p that is a characteristic function of a set €2, p = xq. Furthermore, they
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proved that for attraction ¢ = 2 and repulsion —d < p < 0, there are critical values of the
mass M7 < M so that set valued minimizers with mass M exist for M > My and do not exist
for M < Mj. Subsequently, Frank and Lieb extended this result to ¢ > 0 and p = 2 — d and
proved that there are also critical values of the mass that separate the liquid and solid phases
of minimizers of Eo: if M < M, then minimizers of E., satisfy [{p = 1}| = 0 (liquid), and if
M > Mj, then |[{p =1}| = M (solid) . On one hand, it is known that

(1.5) M; < My < My < M;,

and for Newtonian repulsion and quadratic attraction (p =2 —d, ¢ = 2, d > 2), all four values
equal 1. On the other hand, Lopes provided an explicit example for which M| < M . In
general, it remains unknown for which values of p and ¢ strict inequality holds in any of the
three inequalities in , as well as how the values of the critical masses depend on p and gq.

Concurrently with this work on minimizers of the constrained interaction energy E.,, Kim,
Yao, and the first author studied gradient flows of E.,, which formally solve the constrained
aggregation equation . This work was inspired by the vast literature on height constrained
problems, which arise in both models of crowd motion and tumor growth (see, e.g., ,
,). In the case of a purely attractive Newtonian interaction potential (equation
with p = 2 — d), they characterized gradient flows of E, with set valued initial data in terms
of a Hele-Shaw type free boundary problem. A key element of their proof was that, formally,
gradient flows of E,,, converge to gradient flows of Ey, as m — +o00. Indeed, Alexander, Kim,
and Yao had proved the analogous results for drift diffusion equations in previous work .
However, in the case of aggregation diffusion equations, rigorous analysis of this limit was not
considered, due to the lack of convexity of the interaction potential K.

The objective of the present work is to prove that, indeed, minimizers and gradient flows of
E,. do converge to minimizers and gradient flows Eo, in the slow diffusion limit as m — +oc.
We consider measures with a fixed mass M > 0, and without loss of generality, we rescale so
that M = 1. For a general class of interaction potentials K, including both attractive and
repulsive-attractive power-law potentials , we prove that minimizers of E,, converge to a
minimizer of Es (up to a subsequence and translations) and gradient flows of E,, converge to
a gradient flow of E, (up to a subsequence) in the weak-* topology of probability measures.
The latter result extends the famous Mesa Problem for the porous medium equation to include
a singular nonlocal interaction term (see e.g. [21]).

In the process of proving these results, we also rigorously prove the equivalence between
solutions of aggregation-diffusion equations and gradient flows of the energies E,,. Likewise,
we extend the well-posedness theory for aggregation-diffusion equations to include singular
repulsive-attractive power-law potentials, thereby filling a gap in the existing theory. Finally,
we succeed in characterizing the minimal subdifferential of E., along the gradient flow, a key
quantity in the study of gradient flows, which was identified formally in previous works on
constrained energies . We believe that one of our main contributions is the extension of
the theory of Wasserstein gradient flows to energies, such as E,, and E., that satisfy neither
the classical A-convexity assumption of Ambrosio, Gigli, and Savaré nor the more recent
w-convexity assumption [3}[4,[27[29][42].

Finally, we apply these theoretical results to develop a numerical method for gradient flows
and minimizers of the constrained interaction energy E.,. We use Carrillo, Patacchini, and the
first author’s blob method for diffusion (see [35]) to simulate gradient flows and minimizers of
E,, for m large, thereby approximating the corresponding gradient flows and minimizers of E..
While there exist other numerical methods for constrained problems—such as Liu, Wang, and
Zhou’s method for purely attractive Newtonian interactions and several Kulerian methods
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based on the JKO scheme ,—our particle method is unique in its ability to resolve
the nonlocal interaction term for a range of interaction potentials K. As the primary goal of
the present work is theoretical analysis of the slow diffusion limit, we restrict our numerical
study to one dimension, though our method naturally extends to all dimensions d > 1.

We conclude with several numerical simulations that shed light on open questions for mini-
mizers of the constrained interaction energy. These numerical results indicate that the critical
values of the mass M; and M, that separate nonexistence and existence of set valued mini-
mizers of E,, are in fact equal, and we explore how M; = M> depends on the attraction and
repulsion parameters g and p. We also observe that, for p = 1, the critical masses M; and
M3 that separate the liquid and solid phases are in general not equal, except for ¢ = 2, so
that the existence of an intermediate phase is indeed the generic behavior for minimizers of
the constrained interaction energy.

We now describe the assumptions we impose on the interaction potentials K and then
provide a precise statement of our main results. We conclude the introduction with an outline
of our approach and a brief summary of our notation.

1.1. Assumptions on Interaction Potentials. We impose the following assumptions on
the interaction potential K and diffusion exponent m. To ensure lower semicontinuity of the
energies E,,, and E., with respect to weak-* convergence of measures, we suppose that m > myg,
where mg and the interaction potential satisfy the following condition.

(LSC) K : RY — [~o0,00] is even, locally integrable, and K = K, + K} for two lower
semicontinuous functions K, and K}, where K, is bounded below and K € LT’OO(Rd),
for r € (1, 4+00); the lower bound on the diffusion exponent satisfies mg > 1+ 1/r.

Remark 1.1 (Diffusion Dominated Regime). In the case of an attractive power-law interaction
potential, K(z) = |z|P/p for —d < p < 0, hypothesis is equivalent to the requirement
that we are in the diffusion dominated regime, mo > 1—p/d (cf. [L1043167]). More generally, for
repulsive-attractive power-law interaction potentials K (z) = |z|9/q — |z|P/p with —d < p < ¢,
hypothesis merely requires that my > 1. (See Proposition )

In order to establish the existence of compactly supported minimizers and prove that mini-
mizers of E,, converge to a minimizer of E,, as m — 400, we impose the following assumptions
on the regularity and growth of the interaction potential.

(ATT) Either K is purely attractive and approaches some constant ¢ € R at infinity or K
grows to infinity at infinity. Namely, either

(i) lim|g| 400 K(7) = ¢, and £ — K € LP(R4\ B) for some 1 < p < oc;
K € C'(RY\ {0}), 9K >0, and for all [z > 1, §, K < C; or,

(ii) lim|m|_>+oo K(SU) = +o0.

To prove that gradient flows of E,,, converge to a gradient flow of E.,, we impose the following
assumptions on the growth, regularity, and stability of K % p and VK * p for all p € Po(R%) N
L™(RY), where Po(R?) denotes the set of probability measures with finite second moment,
Ms(p) = [ |z|?dp(x) < 4+00. We assume that there exists a constant C > 1 and a continuous,
nondecreasing, concave function 1 : [0, +00) — [0, 400) with 1(0) = 0 so that for all m > myg
and p, p1, v € Po(RY) N L™(RY),
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(GF1) [[VK *pll2) < C(1+ [[pllm + Ms(p)'/2 + My (v)Y/?);
(GF2) K # p € CY(RY) and |VK = p(x) — VK * p(y)|* < C(1L+ ||pl|2)¢ (|l — y[?);
(GF3) VK (p= )|z < C(1+ 1ol + [¥lbn + lbn ) ¥ (dws_, (p, ) for some e € (0,1).
Remark 1.2 (differentiability vs convexity). Hypothesis is weaker than the analogous

hypotheses in previous work ,, since in the present context we merely require differen-
tiability of E,, instead of convexity (or w-convexity) of E,,.

Hypotheses [[LSC)| [[ATT)} and [[GFID)}{(GF3)| are satisfied by the attractive and repulsive-
attractive power law potentials described in the introduction (|1.3)); see Theorem |3.1

1.2. Main Results. Our first main result establishes the convergence of energy minimizers.

Theorem 1.3 (minimizers weak-* converge to minimizer). Suppose K satisfies hypotheses
[((LSC) and [(ATT). Then for any sequence p,, € Po(R?) of minimizers of E,,, there exists
p € Po(RY) s0 that, up to a subsequence and translations, py — p in P(RY) and p minimizes
Eco-

Remark 1.4 (existence of minimizers of E,,). We use hypothesis [(ATT)| to conclude existence

of minimizers of E,,. If one were able to obtain existence by other means, hypothesis |(LSC)|is
sufficient to conclude the m — +oo limit.

For attractive or repulsive-attractive power-law potentials, we adapt the arguments by Rein
[63] and Frank and Lieb , respectively, to prove that minimizers of the energies E,, are
compactly supported uniformly in m.

Theorem 1.5 (uniform bound on support). Let p,, be a minimizer of the energy E,,,. For
1 1

(1.6) K(z) =|zP/p with —d<p<0 or K(z)=—|z|7——|z]P with—-d<p<0<gq
q p

there exists R > 0 so that supp py, C Br(0) for all m > 1 sufficiently large.

As a consequence of the previous two theorems, we obtain the convergence of minimizers of
E,. to a minimizer of E, in the stronger 2-Wasserstein distance.

Corollary 1.6 (minimizers converge to minimizer). For interaction potentials K of the form
(1.6), any sequence of minimizers of E,, converges, up to a subsequence and translations, to a
minimizer of Eoo in the 2-Wasserstein metric.

We next turn our attention to gradient flows of the energies E,,, and E.,. We begin by showing
that, for m sufficiently large, gradient flows of E,, exist and solve the aggregation-diffusion
equation, for all initial data in the domain of the energy D(E,,) = {p € Po(R%) : E;n(p) < +00}.
Theorem 1.7 (well-posedness of gradient flows). Suppose K satisfies hypotheses and
and m € [myg, +o0].

(i) For all pﬁ,?) € D(E.,), the gradient flow of Ey, with initial data pgg) exists.
(i) If the modulus ¥(s) in satisfies Y (s) = s and fol(sw(s))fl/st = +o00,
then the gradient flow is unique.
(iii) For m < +oo and pSS) € D(E,), pm(t) is a gradient flows of E,, if and only if it
solves the aggregation-diffusion equation in the duality with C°(R? x [0,T7),

Orpm +V - (VK % pm)pm) = Ap™, pm(0) = pl9)
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Remark 1.8 (existence). In the particular case that K is a singular attractive power-law
potential, K(x) = |z|P/p for 2 —d < p < 0, and the diffusion exponent is sufficiently
large, m > mg > max{d/(d + p — 1),1}, the previous theorem extends the range of initial
data pg for which it is known that solutions to the aggregation-diffusion equation exist from

po € L®(RY) NP(RY) to po € D(E,); see ,. In Proposition we also strengthen
the energy dissipation inequality from these previous works to an energy dissipation identity.
To our knowledge, the previous theorem provides the first existence results for aggrega-
tion-diffusion equations with singular repulsive-attractive power-law potentials of the form
K(x) = |z|%/q — |z|?/p, 2 —d < p < q < 2, provided that m > my > max{d/(d +p —1),1}.
This complements recent work by Carrillo and Wang, which studied global boundedness of
solutions, under the assumption that solutions exist locally in time .
Remark 1.9 (uniqueness). If K(z) = |z|P/p or K(z) = |z|?/q — |z|P/p for 2 —d < p < qg <2
and mo > d/(p + d — 2), then we may take 1(s) = s|log(s)| for s near zero in hypotheses

(GF2)H(GF3); see Proposition 4.4]. Consequently, the gradient flow of E,, is unique for

m = mg > d/(p+d—2) and the gradient flow of E; is unique.

We apply this result to show that, up to a subsequence, gradient flows of E,, with well-
prepared initial data converge to a gradient flow of E,, as m — 4o0.

Theorem 1.10 (subsequence of gradient flows converges to gradient flow). Suppose K satisfies

hypotheses [(LSC)| and (GF3). Let py(t) be a gradient flow of E,,. Suppose that the

initial data ,072 1s well-prepared: sup,, Mg(pgg)) < +o0 and for some p(© € D(Es)
PO 2 5O weak-* in P(RY) and li_r)n Em(p9) = Eoo(p©).

Then pm, has a weak-* convergent subsequence so that p,(t) — p(t) for almost every t > 0,
and p(t) is a gradient flow of Eo with initial data p(o). Furthermore, as m — oo,

Em(pm(t)) = Ex(p(t)) for all t > 0;
|0Em| (pm) — 10Eco|(p) and |pjulay — 1¢lay, in Line(0, +00).
Finally, for almost every t > 0, there exists
(1.7)  o(t) € HY(RY) satisfying o(t) > 0 and o(t) = 0 almost everywhere on {p(t) < 1},
s0 that, up to a subsequence, p'(t) — o(t) in L*(R?) and VK xp(t)+Va(t)/p(t) is the element
of OEs(p(t)) with minimal L?(p(t)) norm.

Remark 1.11 (minimal subdifferential of E,,). A byproduct of our result on the convergence
of gradient flows is that we are able to characterize the minimal element of the subdifferential
of Eo along the gradient flow. This result can be easily extended to allow a A-convex drift
potential V(x) in the energies E,;, and E, by adding term of the form 0V to the subdifferential.
This makes rigorous formal characterizations of the subdifferential from previous works ,.

For attractive or repulsive-attractive power-law potentials, we may use uniqueness of the
gradient flow of Eo (see Remark [1.9) to immediately obtain a stronger convergence result.

Corollary 1.12 (gradient flows converge to gradient flow). Given an interaction potential
K(z)=z[’/p or K(x)=lz|"/q—[z[’/p for 2—-d<p<q<2,
consider gradient flows py(t) of Ep, with well-prepared initial data: sup,, Mz(p§2)) < 400 and
for some p© € D(Ey)
PO 250 weak-* in P(RY) and lim Epn(pl?) = Exo(p@).

m—r00
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Then pm(t) = p(t) for almost every t > 0, where p(t) is the unique gradient flow of Eoo with
inatial data p(©).

1.3. Outline and Notation. The remainder of the paper is organized as follows. In section
we recall fundamental results on the Wasserstein metric, gradient flows, and I'-convergence.
In section we prove that attractive and repulsive-attractive power-law potentials satisfy
our main hypotheses [[LSC)} [[ATT)} and [[GFT)H(GF3)| (Theorem . In section {4 we prove
that the energies E,, and E., are lower semicontinuous with respect to weak-* convergence
of measures (Proposition and bounded below, uniformly in m (Proposition . We
then characterize the minimal element of the subdifferential of E,, (Proposition , identify
an element of subdifferential of E (Proposition [1.9), and prove well-posedness of gradient
flows (Theorem . In section |5, we prove our main results on convergence of minimizers
(Theorem and the uniform bound on the support of minimizers (Theorem. In section
|§|, we prove our main result on convergence of gradient flows (Theorem. Finally, in section
[7, we apply these theoretical results to develop a numerical method for simulating gradient
flows and minimizers of E.,, which we use to explore the open questions about minimizers of
E., described in the introduction.

We conclude by briefly reviewing our notation. When a probability measure p € P(R?) is
absolutely continuous with respect to Lebesgue measure, p < £%, we commit a mild abuse
of notation and denote both the measure and its density by p, dp = p(z)dz. Differentials in
integrals will likewise be written either as dp(x) or p(z)dz, depending on the context. Norms
with respect to Lebesgue measure will be denoted by single subscripts (e.g., || - ||,) whereas
LP-norms with respect to a measure p € P(R?) will be explicitly marked (e.g., || - [ zp(u)). We

denote convergence with respect to the weak-* topology by —. For measures that depend on
time u(t) € P(R?), we commit a mild abuse of notation and identify

1 1
(1t )te(0,1) ~ /0 0t ® prdt so that // f(t x)dp = /0 /Rd f(t, @) dpe(x)dt.

We let xqo denote the characteristic function on a set € R? and Q¢ denote the complement
of ©2. We allow all constants C' > 0 to change from line to line.

2. PRELIMINARIES

2.1. The Wasserstein Metric. For b € [1, 2], we consider measures belonging to the space

Eﬂrwz{uepm%:/mr@m»<+m}

of probability measures with finite bth moments. We endow this space with the b-Wasserstein
metric, which we recall briefly now. For further background, we refer the reader to the books
by Ambrosio, Gigli and Savaré [2] and Villani [69].

The b-Wasserstein distance between p, v € Py(R?) is given by

1/b
(2.1) i) = (min] [[lo = sl drtai v e clun})
where C(u,v) is the set of transport plans between p and v,
Clu,v) = {'y EPRYxRY): (m)yy=p and (m)py = l/} .

Here 1, my denote the projections 7 (z,y) = = and m(x,y) =y. For i = 1,2, (m;) 47 denotes
the pushforward of  defined by (m;)4y(U) := y(m; *(U)) for any measurable set U C R?. By
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Holder’s inequality for the probability measure v € P(R? x RY), we have
(2.2) dw, (p,v) < dw,(p,v), forall b <a.

For any u,v € Pa(R?), the minimization problem (2.1 admits a solution: there exists an
optimal transport plan vy € Co(u, ) so that

v ) = ( [ [~ y|bd’70(l‘7y)>1/b-

Furthermore, if b > 1 and v is absolutely continuous with respect to Lebesgue measure,
vE Pb,ac(]Rd) = {p e Py(RY): p < Ed} ,

then there exists an optimal transport plan g that is given by the product of the identity map
Id(z) = « and a Borel measurable function t} : R? — R? i.e., v = (Id xt£) zv (cf. [2, Theorem
6.2.10], [5, Theorem 7.1]). The function t} is an optimal transport map from v to p.

Along with these characterizations of optimal transport plans, for all b € [1,2], (Py(R%), dw,)
is a complete and separable metric space |2, Proposition 7.1.5]. We now suppose b > 1. While
bounded subsets of (Py(RY),dy,) are not generally relatively compact in the b-Wasserstein
metric , Remark 7.1.9], they are relatively compact with respect to dyy, for a < b. Likewise,
convergence in dyy, can be characterized as follows (c.f [2, Remark 7.1.11]):

dw, (fn, 1) = 0 =, — p weak-* in P(RY) and [ |2|° dun(z) — [ |2|° du(x),

= [ f(@)dun(z) = [ f2)du(z),
for all f € C(R?) such that |f(z)| < O(1 + |z — x0]%).
When b = 2, we abbreviate dy = dy,.

2.2. Gradient Flows and their I'-convergence. We now briefly recall the notion of a curve
of mazximal slope in a compete metric space (S, d), which generalizes the concept of gradient
flows outside the Riemannian context. We refer again to the book by Ambrosio, Gigli, and
Savaré [2] for further details. A curve u(t) : (a,b) — S is 2-absolutely continuous if there exists
m € L*(a,b) so that

(2.3) d(u(t),u(s)) < /t m(r)dr for all a < s <t <b.

We denote the space of 2-absolutely continuous curves by AC?([a,b],S).
For any 2-absolutely continuous curve, the limit

[u'(t)] = lim M

s—t ’3 — t’

exists for a.e. t € (a,b). Furthermore m(t) := |u'(t)| € L?(a,b) satisfies and for any
m € L*(a,b) satisfying ([2.3), we have [u/(t)| < m(t) for a.e. t € (a,b).

Given a functional F : § — (—o0, +00] that is proper, i.e., D(F) = {u € § : F(u) < 400} # 0,
its upper gradient is a generalization of the modulus of the gradient from Euclidean space.
Specifically, g : S — [0, +00] is a strong upper gradient for F if for every u € AC?([a,b],S) the
function g o u is measurable and

(2.4) |F(u(t)) — F(u(s))| < / g(u(r)|u'|(r) dr for all a < s <t < b.
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When F is convex and lower semicontinuous, one example of a strong upper gradient is given
by the metric local slope , Corollary 2.4.10] ,

(2.5) 0F (u) = limsup W.

Next, we recall the definition of a curve a maximal slope. A locally 2-absolutely continuous
curve u : (a,b) — S is a curve of mazimal slope for F with respect to the strong upper gradient
g if there exists a non-increasing function ¢ so that ¢(t) = F o u(t) for a.e. t € (a,b) and

(2.6) P (t) < —%|u’\2(t) = %gQ(u(t)) for a.e. t € (a,b).

Suppose F : P2(R?) — RU {+oc} is proper, lower semicontinuous, and D(|OF|) C Pa q.(RY).
For any p € D(|OF|), a map & € L?(uu) belongs to the subdifferential of F at yu if

(2.7) F(v) — F(u) > /<§,tz —1Id) dp + o(dw (p,v)) for all v w, L.
We denote this by & € OF(u).
Remark 2.1 (subdifferential and metric slope). For any £ € OF(u), we have |[€][12(,) = |OF|().

When & = P(R?) is endowed with the 2-Wasserstein metric dyy, a locally 2-absolutely

continuous curve p : (0,00) — Po(R?) with [1/| € L _(0,00) is called a gradient flow relative

to the functional F if its velocity vector v(t) satisfies
(2.8) —ov(t) € OF(u(t)), wv(t) € Tanu(t)Pg(Rd) for a.e. t € (0, 00).

The velocity vector field v is associated to u through the continuity equation dyu+V - (vp) = 0.
If F is proper, lower semicontinuous, bounded below, and regular (see Definition and its
metric slope |OF| is a strong upper gradient, then p(t) is a gradient flow of F if and only if pu(t)
is a curve of maximal slope for |OF| , Theorem 11.1.3]. In particular, if u(t) is a gradient flow
of F, then |¢/|(t) = |OF|(u(t)) for almost every t.

With these definitions in hand, we now recall a general result of Serfaty on the I'-convergence
of gradient flows on a metric space. We state a mild variant of this result, similar to that used
in Theorem 5.6], which is a direct consequence of Serfaty’s original proof.

Theorem 2.2 (cf. Theorem 2] ). Let F,, and F be functionals defined on (Py(RY), dy)
with strong upper gradients |0OF,| and |OF| . Suppose that w, is a curve of mazximal slope of Fy,
with well-prepared initial data 1, (0), i.e., there exists u(0) € D(F) so that

n0) > u(0) and  Tim Fy (s, (0)) = F(u(0).

If there exists some p € AC%([0,T], Po(R%)) so that i, (t) = u(t) for all t € [0,T] and
(1) liminfy, o0 Fr(pa(t)) = F(u(t)),
(i) Uminf, oo [3 |1 [2(s) ds = [ ' (s) ds,
(ii) U inf,, o0 [ [OF |2 (1n(s)) ds > [ |OF|2(u(s)) ds,
then p is a curve of mazimal slope of F and

lim Fo (1)) = F(u(t) for all t € (0.7,
O al (1 (£)) = [OF|(a(8)) and |1, |(¢) = [1](t) in L*([0,T)).
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For the 2-Wasserstein metric dy the second criterion in Theorem above holds indepen-
dent of the choice of the energy functionals, and follows from the properties of the metric only,
as the following elementary lemma shows. For lack of a reference, we include a proof.

Lemma 2.3 (Lower bound on metric derivatives). Suppose p, and p € AC?([0,T], Po(R%))
for all n € N. If ju,(t) = pu(t) in Po(R?) for all t € [0,T], then
liminf/ |l | () dt>/ |1/ |(t) dt. for all s € [0,T).
0 0

n—o0

Proof. We may assume, without loss of generality, that there exists 0 < C' < +o00 so that

Choose a subsequence |u},[(t) so that limy, o0 [y |15,|*(t) dt = C. Then |u;,|(t) is bounded in
L?(0,5) as a sequence in n € N, so, up to a further subsequence, it is weakly convergent to
some v(t) € L?(0,s). Consequently, for any 0 < so < s1 < s,

) S1 , B S1
Jm [ llwd= [ v

50
By taking limits in the definition of the metric derivative and using the lower semicontinuity
of dy with respect to weak-* convergence,

S1

i (so). (o)) < [ 00 vields (sl (o)) < [ vy

S0 S0

By [2, Theorem 1.1.2], this implies that |[¢/|(t) < v(t) for a.e. ¢ € (0,s). Thus, by the lower
semicontinuity of the L?(0, s)-norm with respect to weak convergence,

lim inf dt > )2 dt > '|2(t) dt
imint [ o de> [P [

and we obtain the result. OJ

3. POWER-LAW INTERACTION POTENTIALS

In the present section, we prove that the interaction potentials described in the introduction
satisfy our main hypotheses.

Theorem 3.1. Suppose K is a power-law interaction potential of the form
(31) K@ =|al/p or K@) =l|oli/g—|zl/p with 2—d<p<q<2,

where we adopt the convention |x|°/0 = log(|z|). Then for all m > mo > max{d/(d+p—1),1},

K satisfies hypotheses [(LSC), [(GFTJH{(GF3) for all 2 —d < p < q < 2, and [(ATT) for
2—d<p<qg<2andqg>0.

Remark 3.2. Note that nonnegative combinations of the above potentials continue to satisfy
the hypotheses, where the constraint on m depends on the most singular part of the potential.

We start by showing that power-law interaction potentials K satisfy hypothesis [(LSC)

Proposition 3.3. If K(z) = |z|P/p with —d < p < 0, then |(LSC) holds for r = —d/p. If

K(x) = |z|P/p with p > 0 or K(x) = |x|%/q — |x|P/p with —d < p < q, then K satisfies|(LSC)
for all r € (1,400).
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Proof. By definition, K is even and locally integrable. Suppose K(x) = |z|P/p for p > 0 or
K(z) = |z|?/q — |z|P/p with —d < p < ¢. Then K is lower semicontinuous and bounded from
below; hence, is satisfied with K, = K and K, = 0 € L"(R?) for all r € [1, +00).

Now, suppose K (z) = |z|°/0 = log(|x|). Let B = B1(0) and define K, = Kxpa\p and
Ky, = Kxp. Then K, is continuous and bounded below and K, € L"(R?) for all r € [1, 4+00).
Finally, suppose K () = |z|P/p with —d < p < 0. Then we have K € L~4/P>(R%), and
is satisfied with K, =0 and K;, = K. ]

We now show that power-law interaction potentials from Theorem [3.1] satisfy
Proposition 3.4. Suppose K(x) = |z|P/p with —d < p < 2 or K(z) = |z|9/q — |z|P/p with
—d<p<q<2andq>0. Then K satisfies hypothesis|(ATT).

Proof. Suppose K (x) = |z|P/p with p > 0 or K(z) = |x|?/q — |z|P/p with —d < p < ¢ < 2 and
q > 0. Then limp,_,. K(z) = +oo, and 11 is satisfied. Similarly, for K(z) = |z|P/p
with p = 0, K grows to infinity and satisfies hypothesis (1) On the other hand, when
K(z) = |z[P/p with p < 0, K is strictly increasing with lim|y_,., K(z) = 0. Moreover, for
B = By(0), we have that K € L*(R?\ B) for some fixed 1 < a < co, K € C'(R%\ {0}), and
VK| <1 for |z| > 1. Therefore, K satisfies the hypothesis [[ATT)i). O

Next we verify the hypotheses (GF3)l As these are preserved under finite linear
combinations of interaction potentials K, it suffices to show them for potentials of the form

(3.2) K(z) = [z]"/p, 2-d<p<2

We begin with a few results concerning potentials of this form and conclude with the proof of
Theorem [3.1] at the end of the section.

Lemma 3.5. Suppose K(z) = |z|P/p for 2—d < p < 1. Then for allmg > d/(d+p—1) and
p € Po(RY) N L™Mo(RY) there exists Cqp > 0 so that VK * plleo < Cap(1+ ||pllme)-

Proof. Since mg > d/(d + p — 1), its Holder exponent satisfies my’ < d/(1 — p) and VK €
L™ (B) N L>®(R%\ B), where B = B;(0) C R? is the unit ball. Thus,
IVE * pllsc < [(VEXB) * plloc + [[(VEXRa\B) * plloc
S VK| pmor gy l2llmg + 1V K[ oo may5) I 2]l1,

where xp denotes the characteristic function of B. O

We now consider the hypothesis [(GF1)
Proposition 3.6. Suppose K(x) = |z|P/p for 2 —d < p < 2. Then K satisfies hypothesis
[(GF1) for all mo > max{d/(d+p—1),1}.
Proof. When p < 1, we may use the uniform bound from Lemma [3.5] to conclude that for any

1 2
v € Po(RY), we have VK %p| 12y < [VE 5 pllocl[VIh"* < C([lpllmo +1) < C'([lp]lm+1). Now,

assume 1 < p < 2. Then there exists ¢ > 0 so that |[VK (x)| < (|| + 1) for all z € R%. Thus,
by Minkowski’s integral inequality and Jensen’s inequality for the concave function s — s/2,

IV # pll o < / ( / VK (@ - y)\Qdmy))l/Q dv(x)

1/2
c <//(2’33\2 + 2|y\2 +1) dp(y)du(x)) < \/§C(M2(p)1/2 X Mg(l/)l/Q 4 1),

which gives the result. l
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We next turn to hypothesis
Proposition 3.7. Suppose K(x) = |x|P/p for 2 —d < p < 2. Then K satisfies hypothesis
(GF2) for all mo > max{d/(d +p—1),1}.

Proof. Tt suffices to estimate each component of the gradient VK % p = [0; K * p] separately.
Our approach is classical (cf. Theorem 2.2]), extending known results about continuity
properties of singular integrals to interaction potentials with at most quadratic growth at
infinity.

Let R = |z — y|. Then,

|0; K * p(z) — 0:; K * p(y)| = ’/ (0K (z — 2z) — 0;K(y — 2)) dp(z)

+ Lol 1L
/BzR(ﬂv) R\ Bag(x) Bar(z) RN Bag ()

We begin by estimating 1. If p = 2, let § = 1. Otherwise, choose 5 € (0,1] so that
mo >d/(d+p—1—p) > 1. Define r :=d/(d+p—1—03) € [1,mg), and let " be the conjugate
index of r. Since p — 1+ (d/r") = 3 € (0,1],

1</' |@Kw—ww@u»+/ 0K (y — 2)) dp(2)
BQR(x) BQR xT

<[ et [y
Bsgr(z) B3r(y)

. |P*1‘

_ 4 = I+1I

<

. ’p,l)

<llellr ||lx - ))+Hp||r ly—

L™ (Bag(z L™ (Bsr(y))

< Cllpllr|z — y|?,

for C' = Cyp,. Now, we estimate II. For z, := az + (1 — o)y, o € [0, 1], we have

1
/ / i&K(:L‘a — z) dadp(z)
R\ Bag(z) /0 dex

1
/ / (VO,K (x4 — 2),y — x) dadp(2)
RA\Byg(z) /0

II =

< Clz — y| max / 2o — 2|P72 dp(2).
a€[0,1] JRA\ By g ()

If p = 2, the integral is bounded by 1 and 8 = r = 1. Thus, II < C|z —y[P~1T@/") = C|z—y|P.
If p <2, then p— 2+ (d/r") <0, and we may bound the integral as follows,

1/r
N e O I BN e
R\ By (x) R4\ Bag(z)

1/r
< ol / 20 — 2|72 4
RN\Bg(za)

< COllpllr|z — y|p=2+),
Therefore,
I+ 11 < Cllpllolz — yP ) < C(llpllm + Do (J2 — yl),
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for 1(s) = sP~1Hd/™) = 8 5 € (0,1], which completes the proof of O

In order to show that power-law interaction potentials satisfy property [(GF3)| we begin with
the following estimate, quantifying the stability of VK * p in the 1-Wasserstein metric when
K is sufficiently regular.

Lemma 3.8. Suppose K(x) = |z|P/p for 1 < p < 2. Then there exists C > 0 so that, for all
PV E Pl (Rd)z

IVE % p— VK % v < Cldw, (p,1))® .

Proof. Let vy € Co(p,v) be the optimal transport plan from p to v. Using |[VK (v) — VK (w)| <
C|v — w|P~! and the concavity of the right hand side, we obtain

IVK % p— VK % V|0 = sup / (VK(x —y) — VK(z — z)) dy(y, 2)
x€R4
(p—1)
<c [[r-wrtanwa <o ([l -ana) "
which completes the proof. ]

We now use the previous estimate to quantify the stability of VK x p in the b-Wasserstein
metric for all b € [1, 2] and for general attractive power-law potentials. This generalizes a result
of Loeper Theorem 4.4] to general power-law potentials, LP spaces, and b-Wasserstein
metrics for b < 2. This generalization plays a key role in our proof of the I'-convergence of
gradient flows, since the 2-Wasserstein gradient flow structure merely provides compactness in
b-Wasserstein metrics for b < 2. To obtain convergence of the subdifferentials of the interaction
energies, we require continuity of VK x p with respect to weaker Wasserstein metrics.

Proposition 3.9. Suppose K(x) = |z|P/p for 2 —d < p < 2 and fix 8 so that
(p—1Dy<p<lforp<2 or pB=1forp=2.
Then for all 0 < € < 1, there exists C' > 0, depending on d,p, €, and 3, so that
IVE #p = VE vl < Cmax { ol [V, } ™" Vs (o,)
for all p, v € Po(R?) N L™ (RY), where

# and  p, = d(2 —€)
d+p—1-p T 3-p-B—e(1-8)

Proof. Let b=2—¢€ € (1,2], and let t, be an optimal transport map from p to v with respect
to the b-Wasserstein metric. If p = 2, then m, = 1, p, = 400, and by Lemma

My =

IVK % p— VK 5 v, < Cd, (p,v) < Cduy (p,v).

Now, suppose p < 2, so p. € (1,+00). Let po := ((1 — a)ty + ald)yp, a € [0,1], be the
constant speed geodesic in the b-Wasserstein metric, and let t5} and t/° the optimal transport
maps from intermediate points along the geodesics to the endpoints, a € (0,1) Lemma
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7.2.1]. Then, by Minkowski’s integral inequality,

1
d
H/ —VK*padoa </ —VEK *po| do
Da 0 do P
/ DK (- — (1 - a)y — ats () (t5(y) —y) dpo(y)|| da
y
1
| [ pre - i) - @) )| da= [ 9% < 62 - 2000, o
Px

By Sobolev’s inequality for Riesz potentials (p > 2 — d; cf. Section 4.2]) and the Calderén
Zygmund inequality (p = 2 — d; cf. [66, Theorem V.1]) and Holder’s inequality,

ID2K = [(t5% = t52)palllp. < Capp. 165 = €52 pall

< Capy. | (85— 2)p ””H oo,
for
2—¢€)d d(2 —
2-¢ €(1,2] and r= 2-¢ € [2,4+00].

T 2+p—1-fB+eB—d—p+1) d+p—1-p)(1—¢)
Finally, by convexity of LP-norms along b-Wasserstein geodesics 2, Proposition 9.3.9],
[pallm. < (1= a)|pllm. +allvlm. <max{]lpllm., [[v[lm.},

which, combined with the previous inequalities gives the result. O

Finally, we use the result of Proposition to show that power-law interaction potentials
satisfy hypothesis

Proposition 3.10. Suppose K(x) = |z|P/p for 2 —d < p < 2. Then K salisfies hypothesis
((GF3) for all mg > max{d/(d +p — 1),1}. In particular, for all 0 < € < 1, there exists
C. = C(p,d,mg,€) >0 and ae = a(p,d, mo,€) € (0,1] so that

IVK 5 p = VE s vl < Ce( 14 olhmo + 19mg + el ) 5, (,1):

Remark 3.11 (range of mg and €). For mg sufficiently large and ¢ = 0, we obtain o = 1, and
this proposition reduces to Assumption 4.1(v)]. Consequently, the main contribution of
this new estimate is that it lowers the range of admissible values of mg and strengthens the
Wasserstein metric in the estimate. This extension is crucial is the case p = 2 —d, d > 2, since
previous works required my = +o00, while this new estimate allows all mg > d. This extension is
also crucial in that it provides stability with respect to weaker Wasserstein metrics when € > 0.
Such a stability result is needed in our proof of I'-convergence of the gradient flows, where we
merely obtain compactness of the gradient flows in b-Wasserstein metrics for 1 < b < 2.

Proof. When 1 < p < 2, Lemma and the fact that pu € P(R?) ensures
IV« p— VE vl < IVK  (p— 9)leo < diws (0,97 < vy ()"

which gives the result.
Now, suppose that p < 1. Let

B=min{d+p—1—d/mo,1} € ((p—1)4,1].
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Note that § = 1 if and only if my > Trv=3 + . Fix 0 < € < 1 and define m, and p, as in Theorem
so that mg > m, > 1. Since Qm*/(m*—l) > py = 1, there exists ae = a(p, d, mg, €) € (0,1]

so that
2

my — 1
By Hélder’s inequality and interpolation of LP-norms,
IVK # p = VK % v 12(0) < IVE * (p = )|, 1) 112l
SIVE * (0= ) IIVE * (p = )13 llllzd?

Lemmaensures VK * (p—v)|loc < Cap(L+|pllm. + [|V|m.). Therefore, applying this and
Proposition [3.9] gives

|IVE xp— VK *v| 120
S CIVEK = (p—v)llp, (L+ [pllm. + HVHm*) el
< Cdy_. (00" max{ | pllme [Vl } 25 (1 + ol + [V ) |l 2.

Simplifying and using that mg > m., we conclude the result for ¥ (s) = s*. O

We conclude this section with the proof of Theorem

Proof of Theorem [3-1, Hypothesis [[LSC)| follows from Proposition [3.3] Hypothesis
are preserved under finite linear combinations of interaction potentials K, so it suffices

to show them for power-law potentials of the form K(x) = |z|?/p for mo > max{d/(d + p —
1),1}. Hypothesis follows from Proposition To see hypotheses [(GF2)H(GF3)| let
Y1(s) = s” be the modulus of continuity from Proposition and let 1a(s) = s be the
modulus of continuity from Proposition Then K satisfies hypotheses [(GF2)H(GF3)| with
B(s) = P1(5) + ¥als). 0

Remark 3.12. (restriction to power-law potentials with p > 2 — d) As shown in Propositions
and we merely require p > —d for the corresponding energies E,, to satisfy hypotheses
[(LSC)| and [[ATT)| (Furthermore, by Proposition hypothesis is sufficient to ensure
that E,, is lower semicontinuous and bounded below; hence its gradient flows exist.) Still, in
order to characterize the subdifferentials of the gradient flows of E,, and study their limits as
m — 400, we need control over derivatives of K % p when p € L™(R?). Consequently, our
results on ['-convergence of the gradient flows require that our energies E,, satisfy hypotheses

(GF3), which hold merely for p > 2 — d.

4. ENERGIES, GRADIENT FLOWS, AND AGGREGATION-DIFFUSION EQUATIONS

In this section, we develop several fundamental properties of the energies and E,, and E,
prove existence and (in some cases) uniqueness of their gradient flows. We also rigorously
connect these gradient flows to aggregation-diffusion equations. In the process, we extend
the well-posedness theory for such equations and, in some cases, obtain sharper estimates on
solutions than has been previously obtained by pure PDE methods; see Remarks [I.§] and [I.9]

The key obstacle in analysis of the energies E,,, and E, is to quantify the competing effects
of the interaction, diffusion, and height constraint terms. We denote the diffusion and height
constraint parts of the energies by

1 / . .
—— [ p™dx if p e LYRY) N L™(RY), 0 if ||lplloo <1,

. +o00 otherwise
400 otherwise, ’
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and the interaction part by

1
(4.2) k()= [[ K= dotaldoty)
so that E,,, =S,,, + Kand E.c = S + K.

4.1. Basic Properties of E,, and E,,. We now develop some basic properties of the energy
functionals E,, and E,. (For ease of notation, we often consider both energies at the same time
by proving properties for E,,, allowing m = +o00.) The results in this section merely rely on
hypothesis In the case of attractive power-law interaction potentials, this is equivalent
to requiring that we are in the diffusion dominated regime. (See Remark )

We first show that the energies are bounded below and that an upper bound on E,,(p)
implies an upper bound on ||p||,.

Proposition 4.1. Suppose K satisfies hypothesis |[(LSC) and m € [mg,+o0]. Then E,, is
bounded below, uniformly in m, and there exists C, > 0 s.t.

1+1
(4.3) 1ol < Emlp) +C.
Proof. First, we show there exists C, > 0 so that, for all m € [mg, +o00] and p € L™(R)NP(RY),
1 1+
(4.4) 5 [Up) o> ~Cot+ ol ),
By hypothesis and the weak Young inequality (cf. Section 4.3], Lemma 4])

1 1 1 1 1
3 /(K xp)dp =5 /(Ka *p)dp+ 3 /(Kb #p)dp > —5l1Kalloo — [ Kbl lloll L 1-
Since m > mg > 1+ L and p € P(RY), interpolating LP(R?) norms,

m m

1+% r(m—1) 1 1+l 1+%
el < llellm™ " < (X llpllm) @0 < A+ lpllm) " < Cp (T4 lplm ™ ) -

Combining the two previous inequalities shows (4.4]).

We now show inequality (4.3). For m = 400, this follows from inequality (4.4)) and the
definition of Es. Suppose m € [mg,+0o0). By definition of E,, and inequality (4.4)), for all

1 1421 141 1 m—1—1
4. Em/ z — m 1 m ") = m | —= m "= — O
(4.5) (p) = ——llpllm = CA+llplm ™) = Il <m_1Hp! C) C

First, assume
1
m—1

1
Then, HPH}J " < En(p)+C and 1D holds. Alternatively, suppose 1) does not hold. Then,
1
HpHm < ((1 + C)(m _ 1))1/(m717;) '

11
(4.6) ol — ¢ > 1,

1
Since m > mg > 1+ 1, there exists C; = C1(C,r) > 0 so that HpH:,:rT < (.

To conclude (4.3)), it suffices to show that E,, is bounded below, uniformly in m > my.
We will show it is bounded below on the set {p € D(E,,) : E,(p) < 1}. By the previous

141
inequalities, on this set, we have Hpm||m+r < 14+ C+ . Combining this with inequality 1)
we obtain that the energy is uniformly bounded below. O
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We now turn to further properties of the energies. For all m € [1,+oc], the energies S,,
are proper, lower semicontinuous with respect to weak-* convergence, and convex in the 2-
Wasserstein metric (cf. ., Proposition 9.3.9], ., Proposition 4.5]). Likewise, for all p €
[1,+00) the LP(R?) norms

ol == {Hp‘p if pe Ll(Rd) N Lp(Rd)a
p -

(4.7) .
400 otherwise,

are also proper, lower semicontinuous with respect to weak-* convergence, and convex in the
2-Wasserstein metric.

We now show that the interaction energy is also lower semicontinuous with respect to weak-*
convergence, on L™ (R%)-bounded sets.

Proposition 4.2 (lower semicontinuity of interaction energy). Suppose K satisfies hypothesis
(LSC). If pn = p and sup,ey || pnllme < +00, then liminf, 1o K(pn) = K(p).

Proof. First, note that since p, — p, we have also have p, ® p, — p ® p. Since K, is lower
semicontinuous and bounded below, by Portmanteau theorem (see [68, Theorem 1.3.4]),

lim inf = / Ko(z — ) dpp(2)dpn(y / Ka(z —y)dp(z)dp(y).

n—-+oo 2

Now, we consider Kj. For any k > 0, define Kj A (—k) = min{Kj, —k}. Since K, : R? —
[—00, +00] is lower-semicontinuous, K A (—k) is lower semicontinuous and bounded below for
all k > 0. Furthermore, since K; € L™ (R?), if we define Sy, := {z : K,(x) < —k}, by the weak
Young inequality (cf. Section 4.3], , Lemma 4]), for any m, € (1+ %, 2) with m, < mo,

} [ (A 0y s o) don = [ ) o

< HEpxs | pre oo ayllonlliz, 7 = (me = 1)~

Since we assume sup,,cy ||onllm, < +00 and m, < my, the second term is bounded uniformly
in n € N. Likewise, since r, < 7, by definition of L™ (R9),

||KbXSkHLT*,oo(Rd) = Sup)"“KbXSk‘ > )\}|1/T’* < SUP/\|{‘K1,| S )\}|1/r*
A>0 A>k
/T -/ -
= sup )\(T*fr)/?”* ()\H|Kb‘ > )\}|l/r) < k(r*fr)/m ‘|KbHL/7"7:°(Rd) ]H—+> 0.
>k

Therefore, for all € > 0, we may choose k > 0 so that

lim inf % /(Kb % pp) dpp, = liminf % / (Kp(z —y) A (—=k)) dpn(z)dpn(y) — €

N—+00 n——+00
1 1
> 5 [(@n Ry pdp—e> 5 [y ep)do e
Since € > 0 was arbitrary and K = K, + K}, we obtain the result. ]

We conclude this section by applying the previous proposition to show that E,, is proper,
lower semicontinuous, and bounded below.

Proposition 4.3. Suppose K satisfies hypothesis |[(LSC) and m € [mg,+o0]. Then E,, is
proper, lower semicontinuous with respect to weak-* convergence of probability measures, and
bounded below.
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Proof. The fact that E,, is bounded below is an immediate consequence of Proposition [4.1
and the fact that S,,, > 0. We now show E,, is proper. By hypothesis K e LIIOC(Rd).
Therefore, evaluating the energy E,, on there characteristic function of a ball B of volume 1,
we have

1

mo—l

Em(xp) < - 1/ K(z —y)dedy < +oc.

2 JJBxB
Hence, E,, is proper.

We conclude by proving that E,, is lower semicontinuous. Suppose that p, — p. Without
loss of generality, we may assume that liminf,,, . E;(pn) < +00. Taking a subsequence
pn so that the liminf is attained, we may also assume that sup,cy Em(pn) < 4+00. Applying
Proposition[d.1]and interpolation of L” norms for 1 < mg < m, we obtain that sup,cy [|onlme <
+oo. Therefore, by Proposition liminf, 4o K(pn) = K(p). Since Corollary 3.5]
ensures lim inf,, o0 Sim(pn) = Sm(p), this gives the result. O

Remark 4.4 (sharpness of condition m > myg). The condition m > mg in Proposition is
sharp to ensure that the energy E,, is lower semicontinuous with respect to weak-* convergence.
In particular, for all € > 0, there exists K(x) and mg satisfying and m € (mg — €, mg)
so that the energy E,, is not lower semicontinuous. For example, we may take K(z) = |z|P/p
for —d < p <0, mg=1—(p/d) +€/4, and m =1 — (p/d) — ¢/4. (We assume, without loss
of generality, that e > 0 is sufficiently small so that m > 1.) By Proposition K and mg
satisfy hypothesis For any p, € Po(R?) we may consider its sequence of dilations py =
A, (Ax), which converges in the weak-* topology as A — 400 to a Dirac mass at the origin
do. Along this sequence the energies E,, satisfy limy . En(py) = —o0 and E,;,(dp) = +oo
(see, e.g. [30, equations (12)-(13)]). Therefore, the energy E,, is not lower semicontinuous in
the weak-* topology.

4.2. Subdifferentials and Gradient Flows. We now characterize the minimal elements of
the subdifferential of E,,,, m € [my, +00), and identify elements belonging to the subdifferential
of Eo.. We defer our full characterization of minimal elements of the subdifferential of Eo, to
the proof of Theorem [I.10]in section [} Following these results on the subdifferentials, we prove
that gradient flows of E,,, and E, exist and provide conditions under which they are unique.
Throughout this section, we use hypotheses [[LSC)| [[GF1)}{{GF3)| on the interaction potential
and suppose m = my.

In order to analyze the subdifferentials of E,, and E.,, we begin with the following lemma,
which bounds the variation of the nonlocal interaction energy K along measures in L™ (R?).

This lemma extends Proposition 4.6], where [(GF1)| [(GF2)| and |(GF3)| generalize

Assumption 4.1]. We defer its proof to appendix section

Proposition 4.5. Suppose K satisfies|(GF1) and po, p1 € L™(RY) for m > mg. Then

K(p1) — K(po) — / (VK % po, t01 —1d ) dpo| < f(po, p1) ¥ (dw (po, p1)) dw (po, p1)

for f(po,p1) = C"(1+ ||pollm + l|p1llm) and C" = C'(dw (po, p1)) > 0 is an increasing function
of the distance from pg to py.

We now apply the previous proposition to obtain the following generalization of Ambrosio,
Gigli, and Savaré’s characterization of the subdifferential for A\-convex energies to the energies
E,, and E.
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Proposition 4.6. Suppose K satisfies[(LSC), [(GFT)}H{(GF3), m € [mq, +oc], and p € D(E,,).
Then & € L?(p) belongs to OE,,(p) if and only if

(4'8) Em(V) - Em(p) P /<§>tz - Id) dp — f(pa VW(dW(% l/))dw(p, l/)a Vv e D(Em)a

for f(p,v) as in Proposition .

Proof. First, suppose & € L?(p) satisfies inequality . We show that it satisfies the subd-
ifferential inequality . For any sequence v, — p, v, € D(E,;,), we may assume without
loss of generality that sup,, E,,(v,) < 400, or else the subdifferential inequality is satis-
fied trivially. Hence, by Proposition [i.1} sup,, |[vn|[n < +o0c. Therefore, f(p,vy,) is uniformly
bounded as v, — p. Consequently, by the definition of the subdifferential , & € Ok, (p).

Now, suppose ¢ € L?(p) belongs to OE,,(p) and v € D(E,,). We show that inequality
holds. Let po, = ((1 — a)Id+at))#p be the Wasserstein geodesic from p to v. Then by
definition of the subdifferential, inequality ,

d RT Em(pa) - Em(p) v
L En(p)| = lim ) > [tee; ~10)dp

a=0
By Proposition [£.5

d

7K(pa)

o = / (VK # po, tfy — 1d ) dpo < K(v) = K(p) + f(p,v) v (dw (p, v)) dw (p, V).

a=0
Likewise, by the convexity of S,, for all m € [mq, +00],

d

%Sm@a) <Sn(v) = Sm(p),

a=0

Adding the three previous inequalities gives the result.
0

Next, we apply the previous proposition to characterize elements belonging to the subd-
ifferential of E,, for mg < m < 4oo. Our proof generalizes Ambrosio, Gigli, and Savaré’s
characterization of the subdifferential of aggregation-diffusion energies to the case of noncon-
vex, singular interaction potentials satisfying hypotheses[[LSC)} [[GFD)H(GFE3)] (cf. , Theorem
10.4.13]), and we defer its proof to appendix section

Proposition 4.7. Suppose K satisfies hypotheses [(LSC), [(GFTH(GF3) and m € [mq, +o0).
Then,

pr e WHHRY),
(4.9) OE|(p) < +00 = { (VE % p) + YE= € 9E(p),
OB wl(p) = |[(VE 5 p) + T2"|

L2(p)
In particular, for all p € D(|OE|), (VK % p) + Y2~ is the unique element of the subdifferential

)
of En at p with minimal L?(p)-norm.

Remark 4.8 (division by p). For simplicity, we commit a small notational abuse in the above
expression of the minimal element of the subdifferential: we divide by p, even though p may
not be strictly positive. More precisely, let w = (VK % p) + @ represent a function satisfying
(VK % p)p+ Vp™ = wp almost everywhere. This function is unique p-almost everywhere.
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We now identify elements belonging to the subdifferential of E,, providing an upper bound
on the metric slope of Es. (See Theorem for the characterization of minimal elements of
OE along gradient flows.)

Proposition 4.9. If K satisfies hypotheses[(LSC), [(GFI1)}{(GF3) and p € D(E,),
VK *p € OEx(p) and [[VK * pl|12(,) = |0Ec|(p)-

Proof. Tt suffices to show VK xp € OE(p), as the second inequality then follows from Remark
By Proposition it suffices to show for all v € D(E),

(4‘10) EOO(V) - Eoo(p)
> / (VK % p,t% —1d )y dp— f(p, v)(dw (p,))dw (p, ), ¥v € D(Ep),

By definition of E, and the fact that v, p € D(Ey), this is equivalent to

(@1) KO =K > [V« p.t) ~ 1d)dp = Flp. ) (o)) o),
which is an immediate consequence of Proposition ]

We apply the previous results to prove Theorem which ensures that, for any initial data
po € D(E,,), the gradient flow exists. It also provide sufficient conditions for the gradient flow
to be unique.

Proof of Theorem[1.7]. Existence follows from Proposition Corollary 11.1.8], and
Example 11.1.9]. Uniqueness follows from Proposition the convexity of S,, for all m €
(1, +0o0], and Proposition 2.8, Theorem 3.12], with w(s) = /s¢(s). The correspondence
between solutions of the aggregation-diffusion equation and gradient flows of E,;, when m < 400
follows from the characterization of the minimal element of the subdifferential from Proposition

and [2, Corollary 11.1.8]. O
We conclude by proving that gradient flows of E,, satisfy an energy dissipation identity.

Proposition 4.10. Suppose K satisfies hypotheses [(LSC) and [(GFTJH{(GF3), m € [mg, +o0],
and pﬁ,ﬁ’) € D(E,,). Then if pp(t) is the gradient flow of E,, with initial data pﬁﬁ), forallT >0,
(i) 1P |(t) = |0Em|(pm(t)) < 400 for a.e. t € [0,T];
(ii) Em(pm (D)) + Jy 10Em[*(pm (1)) dt = Em ().

Proof. The result follow from the fact that the gradient flow is a curve of maximal slope for the
strong upper gradient |OE,,|; see Corollary Theorem 11.1.3], and [2, Remark 1.3.3]. O

5. CONVERGENCE OF MINIMIZERS

In this section, we prove our first main results: up to a sequence, minimizers of the energies
E,, converge to minimizers of the energies E,, and these minimizers have uniformly bounded
support. We begin by proving the I'-convergence of E,, to E.

Theorem 5.1 (I'-convergence of E,, to Ex). Suppose K satisfies . If pm = p, then
liminf E,;,(pr) = Exo(p).

m——+00

Furthermore, for any p € P2(R%), we have limsup,,_, o Em(p) < Exo(p).
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Proof. Without loss of generality, we may assume that liminf, 4~ Ep,(pm) < +00. Taking a
subsequence p,, so that the liminf is attained, we may also assume that sup,, Ep,(pm) < +00.
Applying Proposition and interpolation of LP(R?) norms for 1 < mg < m, we obtain
that sup,, ||pm|m, < +00. Therefore, by Proposition liminf,, o K(pm) = K(p). In
particular, sup,,, K(pm) > —oo.

It remains to show that liminf,, - Sy (pm) = Seo(p). Note that

sup Ep,(pm) < 400 and supK(pp,) > —00 = sup Sy (pm) < +o0.
m m m

Therefore, there exists C' > 1 50 that ||pm|[m < CY™(m — 1)Y/™ < CY™ for m > mg. By the
interpolation of LP(R?) norms, for any r € [1,m],

”,0er < H,OmH}n_e < 0(1—9)/771 < 0(1_9)/1” < Cl/r7

where 0 < 6 < 1 satisfies 1/r = 0+ (1 — 6)/m. Since the L"(R%)-norm is lower semicontinuous
with respect to weak-* convergence, we obtain

loll, < liminf p, < CV7.
m—00

Sending r — +o00 then yields
lolloe < 1.

Therefore Soo(p) = 0, and since S,, is positive, we have

liminf Sy, (pm) = Seo(p)-

m——+00
We now turn to the lim sup inequality. Without loss of generality, we may assume Eo(p) <
+00, 50 [|plloc < 1. Applying Holder’s inequality gives [Sp(p)] < =15 |lpl|= = 0 = Seo(p) as
m — +00, which gives the result. O

We now prove that minimizers of E,, and E exist and are compactly supported.

Proposition 5.2 (existence of minimizers in Pa(R%)). Suppose K satisfies|(LSC) and|(ATT)
Then Eo and E,, admit compactly supported minimizers in P2(R?) for all m > max{mg,2}.

Remark 5.3. Although it is possible to prove the existence of minimizers in the regime 1 <
m < 2, this requires additional assumptions in the hypothesis (cf. hypothesis (K6)
in [26]). Since we are interested in the large m regime we choose to prove the above theorem
for m > max{my, 2}.

Proof. If K satisfies i), then the existence of minimizers of E follows from the fact
that the energy is decreasing under symmetric decreasing rearrangements of p (see e.g.
Proposition 3.1]). For E,,, existence of compactly supported minimizers is established in [26
Theorem 3.1 and Lemma 3.7].

If K satisfies (ii), then the interaction potential K is strictly increasing in every
coordinate outside of some fixed set, and the existence of a minimizer in P(R?) for the energy
Es over P(R?) follows simply by Proposition 4.1]. The minimizer in P(R?) is in fact
compactly supported by Lemma 4.4], and therefore is in Pa(R%).

The existence of a minimizer in P(R?) for E,, also follows by using the growth of K given by
(ii), and by adapting the arguments in Theorem 3.1]. This strong coercive behavior
of K is sufficient to obtain the existence of a minimizer in P(R%) as the diffusion term is
bounded from below (for m > 1); hence, can be controlled by the growth of K.
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In order to conclude that the minimizer is indeed in P2(R?) we need to show that it is
compactly supported in R%. To this end, note that, if p minimizes E,, in P(Rd) then a simple
calculation shows that it satisfies the first-order variational inequality

(K * p)(x) < (K * p)(a) + ——p" (&) < A

for some A\ € R and for all x € supp p. Note that

(K % p)(x) > y RK(CC —y)dp(y) > Crinf {K(2): |z| > |z| — R}
YIS
where R > 0 is chosen large enough so that Cg := p({y: |y| < R}) > 0. Thus lim,_ (K *
p)(x) — oo; hence, {x € R?: (K * p)(z) < A} is bounded, and so supp p is compact. O

An important step in the proof of Theorem [I.3]is the compactness of a sequence of admissible
measures whose E,,-energy is uniformly bounded. The main idea in proving such a compactness
theorem is to utilize Lions’ concentration compactness lemma [52] in order to show that any
sequence of probability measures with uniformly bounded energy is tight up to translations.
The proof of the following lemma follows by arguing as in []g[] and .

Lemma 5.4 (Compactness in P(R?)). Suppose K satisfies|(LSC)| and|(ATT)} Let {pmtms>1 C
P(RY) be a sequence so that sup,, Em(pm) < +oo. Then, up to translations, a subsequence of
{pmYms1 converges to a measure p € P(R?) with respect to the weak-* topology.

Now we turn to our convergence result.

Proof of Theorem[I.3 The convergence of minimizers is a classical consequence of the I'-
convergence result in Theorem when the sequence of energies satisfies a sequential com-
pactness property. Let {pm}ms1 C P2(R?) be a sequence of minimizers of E,, over Py(R?).
Then there exists C' > 0 such that E,,(pn,) < C for m > 1 sufficiently large. Hence, by Lemma
5.4] there exists p € P(R?) such that, up to a subsequence, p,, — p as m — +o0 in the weak-*
topology of P(R?).
Now let v € P»(R?) be arbitrary. Then
Ew(p) < liminf B, (pp) < liminf E,,(v) = Ex(v).
m——+00

m——+00

However, since minimizers of E,, are compactly supported we have that

inf E.o = inf E.
P(RY) P2 (RY)

Therefore p minimizes Eo, over P(RY), and since it is compactly supported, we have p €
Pa(RY). O

Next we show that, for particular choices of K, a sequence of minimizers {pm}m>1 has
compact support uniform in m. In order to establish this we adapt the arguments by Rein [63]
to purely attractive interaction potentials, and follow the method by Frank and Lieb to
handle repulsive-attractive interactions. This allows us to conclude the sequence of minimizers
converges in the 2-Wasserstein metric, despite fact that the compactness result, Lemma
holds only in P(R%). This gives Corollary
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Proof of Theorem[1.5. In order to prove this theorem for interaction potentials K (z) = %]aj\p,
—d < p < 0, we proceed similarly to where in the regime d = 3 and p = —1, Rein obtains
a bound on the support of minimizers of E,, independent of the diffusion term. Let

Iy = inf{Em(p): /pd:n = M}.

Using the scaling properties of the energy functional E,, under the transformations of the form
p(x) — lip(law) it is easy to see (cf. Lemma 3.5]) that Ip; < 0 for all M > 0 by taking
lh = lg, and for 0 < M < M, we have

(5.1) Iy > (M /M),

by taking I; = 1 and Iy = (M/M)Y/,
Now, let p € L'(R%) N L™(R%) be any spherically symmetric, nonnegative function with

llpll1 = 1, and define Mp := f|z|>de:L‘ for any R > 0. Then the splitting of the energy

Em(p) = En(pxBr) + En(pxsg) + / / K(x —y)xBg(2)xse () dp(2)dp(y),

combined with the estimate (which follows due to the spherical symmetry of p)

[ K= e ) an@ant)| < OG- M)
implies that
Em(p) = Inp + li-my, — (1 — Mp)MRRP
> ((1 — Mp)2ap)/d M](:fd*p)/d) I — (1 — Mp)MpRP

2
> (1 S MR>MR) I — (1~ Mg)MpRP.

where we have used ([5.1)) in the second line and Taylor’s expansion in the third line. Defining

d
Ryi=———"—
0 (2d+p) 11
the above estimate becomes
1
(5.2) En(p) > 1 + (R - R”> (1 — Mp)Mgp.
0

Take R > R, 1/p , and assume that for any spherically symmetric minimizing sequence
{pr}ren for I} we have, up to a subsequence, that limg_, . f|m|>R prdr = Mg > 0. Choose

Ry, > R such that M = fIwDRk prdr =1/2 f|m|>R pr dx. Then, by (5.2),
1 1
(o) > I + ( - Rz> (- MMy > I+ ( - Rp) (1 — M),
Ry Ry
Sending k — oo, we get
1 Mg\ Mg
he>h+(——re)(1-28) 28 .
() (-5 5o

a contradiction. Therefore, the minimizer of E,,, which is the weak-* limit of py, is supported
in the ball of radius R, Lp,



24 KATY CRAIG AND IHSAN TOPALOGLU

For interaction potentials in the power-law form, given by K(x) = %|:c\q — %Mp with —d <
p < 0 < g, we adapt the arguments by Frank and Lieb to our case. Let K%(x) = %|x|q and
K'(z) = —%|x|p denote the attractive and repulsive parts of the interaction potential, and K%

and K" the corresponding interaction energies, respectively, so that

En(p) = Sm(p) + K (p) + K" (p).
Let p € L'(R%) N L™(R?) be any nonnegative function with |[p||; = 1. Then

RN\BRg(z)

(o)) > [ Ka<x—y>dp<y>>}f (1—/3 ()pdy>

q
= & 1— sup / pdy | .
q a€R J Bg(a)

Together with the positivity of the diffusion term, this implies that

1 q
Em(p)>/(K*p)dp>R 1—sup/ pdy | .
2 2q acR? J Bg(a)

Therefore we get

_ 24En(p)

5.3) sup / pdy > 1
( Br(a) R

acR4

Now let p be a minimizer of the energy E,,, and let € R? be a given Lebesgue point of p
with p(x) > 0. Let » > 0 be arbitrary, and define

~1/d
§o) = ol xssloft)  wih = ([ o)

so that [|p|l1 = 1. We now suppress the dependence on x and denote by B, the ball of radius
r centered at € R%. Since xp, + XBe = 1, we have

- ’ " I "
B (p) = LK (pxmg) + PR (pxe) + — / p""x B dy

< 120+ <K“(p) - /B K®xpdp(y) + KG(PXBT)>

12 (K’“(p) = | KT pdply) + K’”(ﬂXBJ) 1 (Sn(p) = Smloxs,)).

Since Ep,(p) < Ep(p) and I, > 1, we have

1
K xpdp(y) < K*pdp(y)+/ p" dy
By B, m—1Jp,

< (27— 1)K (p) + (2P — 1)K (p) + (19 — 1)Si(p)
+ 2K (px g, ) + TP KT (px s, )-

(5.4)

First, we will estimate the last two terms and show that they are of order o(r?). Since
—d < p < 0, we have, by the Hardy-Littlewood-Sobolev inequality,

(5.5) K"(pxB,) < CllpllLr)llol e 5,)-
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Using interpolation of LP(R?) norms, for m > d/(d + p)

0
ol s s,y < ol g lollkntis, ) < Cliol: s,
where
d+p _ 1
f = d m
.

On the other hand, by Holder’s inequality, |[p||11(5,) < C’Hp||Lm(Rd)rd_d/m. Combining these,
(5.5)) implies
(5.6) K" (pxs,) < Cllollfi s, < Cr¥dm-imse,

Since the attractive part of the potential is strictly increasing a direct calculation shows that

(5.7) K?(pxs,) < / / (K50, 0))(y — &) dp(y)dply’) < Cré+a,

where in the last step we use Young’s inequality, and the embedding of L™(B»,(0)) into
L?(By,(0)) for m > 2.

Note that, since —d < p, we have (d — p)/(2d) < 1. Therefore, for m sufficiently large,
(m—1)/m > (d —p)/(2d), and 2d(m — 1)/m + p — d > 0. By the estimate (5.6),

\B K (pxa,) < Or2dm=/mir 0.
Moreover, the estimate implies that
1
B,] (pxs,) < Crt =% 0.
T

Consequently, K*(pxs,) + K" (pxB,) = o(r?) as r — 0; and since I, — 1 as r — 0, the last two
terms in ([5.4) are of order o(r?), as well.
Since z € R? is a Lebesgue point of p, recalling the definition of ,., we have
-1 1
1Bl [Br(1 = [, pdy)

/B pdy =% p(x).

Also,
P23 _ 1 2444 1941
L 1
=1 — 7 and l;f—l_>’

as r — 0. Therefore, dividing both sides of (5.4) by |B,| and sending r to zero, we get

2d +q
(5.8) K xp(z) < TEm(p)‘

Now, let R = (4gE,n(p))"/? so that 1/2 = 1 — 2gRIE,, ( . By (5.3), there exists a € R?
such that fB > 1/2. This implies that for every y € R? such that |y al| > (o +1)R (with
o to be Chosen shortly), we have

_ —al — R)Y
Kep)> [ wo—y)apty) > WUEEE [ gy 0=l 200
Br(a) q Br(a) q
o1 R4
2q

= 267E,,,(p).
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Let o := [(2d + q)/(2d)]"/9. Now, for = € R? is Lebesgue point of p such that p(z) > 0,
combining (5.8)) with the above estimate yields a contradiction if |z —a| > (o +1)R. Therefore
p(x) =0 for all € R? with |z — a|] > (¢ + 1)R, and consequently,

diamsupp p < 2(0 + 1)R = C(E,n(p))/? < ¢’

for some constant C’ > 0 independent of m when m is sufficiently large. O

6. CONVERGENCE OF GRADIENT FLOWS

In this section, we prove our main result on the convergence of gradient flows, Theorem [1.10
Throughout this section, we impose the following assumptions on our interaction potential K,

diffusion exponent m, and the initial data of the gradient flows pq(fi).

Assumption 6.1 (Interaction potential, diffusion exponent, and initial data). Suppose K
satisfies hypothesesl(LSC)L|(GF1)H(GF3)L m = mo, and SupP,,s.,, (Em(pgg))+M2(p£,g))) < +o00.

In the next proposition, we prove that several key quantities remain bounded along the
gradient flow, uniformly in m > mg. This plays a key role in our proof of I'-convergence, since
it provides weak compactness of the sequences VK x p,, and V"' /p,, with respect to p,,
as well as weak compactness of p,, in arbitrarily large LP(R%) spaces.

Proposition 6.2 (Uniform bounds along gradient flow). Fiz m < +oo. Suppose Assumption
holds and py,(t) is a gradient flow of E,,, with initial data p,(ﬁ). Then p(t) € WHL(RY) for
a.e. t >0, and for all T > 0,

T
©61)  sup [ 120+ IVK % pullZag oy + 19520 022 0 < +00,
Suwp [ (o (1) (om(0)
(6.2) sup  |[[pm(t)[lm < +o00,  and sup 107 (O L2(j0,1) xRe) < F00.
m>=mg, t€[0,T m>=max{mo,d/2}

Proof. We begin by showing the first inequality in (6.2). By Propositions and there

exists C). > 0 so that
| om () < Em(pm(t)) + Cp < En(pl9) + C,. for all £ > 0.
(0)

By Assumption SUP, > me Em(pm’) < 400, which gives the result.
We now consider inequality (6.1]). By Proposition E,, is uniformly bounded below. By

Assumption ﬂ, Em(p(mo)) is uniformly bounded above. Combining this with Proposition

T T
(6.3) sup [ U6t = sup [ (0B P(on(0) dt < +ox,

mz=mo J 0 mz=mo J0

14+
lm "

which is the first term in (6.1]).
Next, we apply inequality (6.3) to obtain a uniform bound on the second moment of p,, ().
By Holder’s inequality and the definition of the metric slope,

T 1/2

wp w2 o) < swp ([l PO @) VT <px,
m>my, t€[0,T) m>=mo 0

Since Assumption ensures Mg(p,(g)) is uniformly bounded, this implies

(6.4) sup  Ma(pm(t)) < +oc.
m=mo, te[0,T]
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We now turn to the second two terms in ([6.1). By Proposition and Assumption for
almost every ¢ > 0, we have p(t) € WHH(R?) and

(6.5) |0Em|(pm (1) = [IVE s pm(t) + V5 ()] pm ()| 12 (91 (1)) -

By hypothesis the uniform bound on ||p,,(t)|;, from inequality (6.2)), and the uniform
bound on Ms(py,(t)) from inequality (6.4), we have

T
(6.6) sup [ IVK < p(t) gy 0t <+,

m>=mo

which is the second term in (6.1). Then combining equations (6.3)), (6.5), and with the
triangle inequality gives

T
(67) sup [ VOO o )0 <+

mz=mo J 0

which is the third term in . This completes the proof of inequality .

We finally consider the second term in inequality . We proceed by using inequality
and our uniform bound on ||py, (1) to obtain improved estimates on p,,. Since p)(t) €
WL (R?) for almost every ¢ > 0, for any ¢ € C2°([0, T] x R?), there exists C’ > 0 so that

/ [ (Votntt)e) duat = /OT [ {5001/ om0 6(0)) ot

T
< /0 IV (6 () | 22 0 €O 20 0

T
</0 IV 01 () P (O 22 (1) 1 D 12 1E @) 2 1)

T 1/2
c ( O dt) |

T
(6.8) sup [ IOy e < o

m>=mo

Thus,

Since p(t) € WHL(RY), pm(t) vanishes at +oc. Thus, because we have 2m/(m + 1) < 2,
we may apply the Sobolev embedding , Theorem 11.2], with

)t for d =1,
T\ om2d/(m(d—2)+d) ford>2

which gives
(6.9) lom @®lg" = llom Ollg/m < C* IV ) l2m/(m+1)-

For m > d/2, we have ¢ > 2m. Interpolating LP(R%)-norms gives

lom @13 = lom @3 < llom(@)IF @™, for ¢’ = q/(q - 1).

Integrating in time and applying inequality ,

T T T
m ' (2m— 2 2m
(6.10) /0 Lo ()13 dt < /0 lom ()2 C™D dt < C” /0 IV @I a,
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(2m)’

where (2m)" := 2m/(2m — 1). Since q > 2m, we have ¢ < (2m)’, and s — 57/ is concave.

Thus, applying Jensen’s inequality to inequality - gives

r d C// 1 T v 2‘1/(27”
; o ()113 T, IV 01 (D) 20 (1)

1 (T
1" m 2
<0 (5 [ 19O By )
By inequality , the right hand side is bounded uniformly in m, which gives the result. [

q'/(2m)

We conclude with the proof of Theorem

Proof of Theorem [I.10}. First we show that there exists p(t) € P2(R%) so that, up to a subse-

quence, pm(t) — p(t) for all t € [0,T]. By definition of the metric derivative and Proposition
there exists C’ > 0 so that for all 0 < s <t < T and m > my,

6.11)  dw(pm(s), pm / ol(r <m</:|p;ﬁ<t>dt>l/2<c'm.

In particular, taking s = 0 and recalling that sup,,-,,, M2(pn(0)) < +oo, we see that
{Pm(t) }n=mo,tefo,r] 18 uniformly bounded in Po(RY), hence py,(t) is sequentially compact in
the b-Wasserstein metric for all 1 < b < 2 and t € [0,77] [2, Proposition 7.1.5]. Take b =2 —¢
for e € (0,1) as in hypothesis Then using the equicontinuity from inequality , the
generalized Arzela-Ascoli/Aubin-Lions theorem , Proposition 3.3.1] implies that there exists
p(t) € P2(R?) so that, up to a subsequence,
(6.12) lim  dw,__(pm(t),p(t)) =0 for all ¢t € [0,T].

m——+00
In particular, up to a subsequence, we have p,,(t) — p(t) for all t € [0, T7.

It remains to verify criteria (i)—(iii) of Theorem [2.2| to conclude that p(t) is a gradient flow
of Ew and that the corresponding energies, local slopes, and metric derivatives converge as
m — +00.

Criterion (i) follows immediately from Theorem 5.1} and as a consequence, we conclude that
lp(t)]lco < 1 for all ¢ > 0. Criterion (ii) is proved in Lemma Thus, it remains to show
criterion By Fatou’s lemma, it suffices to show that

(6.13) lig}rnf |OEm|(pm(s)) = |0Ex|(p(s)), for a.e. s €[0,t].
By Proposition [6.2] and Fatou’s lemma,
t ¢
(6.14) / liminf 7,,(s) ds < hmlnf/ m(s)ds < 400
0 M—too m——+ 0

for In(s) = |0Em[* (pm () + 0m ()220 () + 10m 20005y + 12 (5)12
U (8) 1= (VK % pr)(s) and vy, (s) := Vi (s)/pm(s)-
In particular, liminf,, 1~ Ln(s) < +oo for almost every s € [0,7]. Fix such an s € [0,7].
We will now show that (6.13)) holds, which completes the proof. As s € [0, 7] is fixed, in what

follows, we will suppress the dependence on time to ease notation.
Up to a subsequence, we have

liminf I,,, = lirE Iy < 400,
m——+00

m——+00
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so that I, is bounded uniformly in m. By Proposition this ensures p,,, € WHH(R?) and
(6.15) 0B ml(pim) = vm + vl L2 (p,0)-

Since ||v,|| 12(pm) and |02, || [2(pm) are bounded uniformly in m, up to another subsequence,
there exist v!,v2 € L?(p) so that for all f € C2°(R?) . 2, Theorem 5.4.4],

. 1 o 1 .
(6.16) ml_lg_loo/fvmdpm—/fv dp, ml_lgrloo/fv dpm /fv dp,
and

. . 1 2 1, .2
(6.17) lim inf |0E | (pm) = Tm_og, + vinllz2(p,) > 10"+ 07|22,

By Remark to complete the proof it suffices to show that v! 4+ v? € 9E(p).
First, we will show that v! = VK # p p-almost everywhere. For all f € C>°(R9),

‘/f[vl—(VK*P)]dp = lim ‘/f[(VK*pm)dpm—(VK*p)dp]’

m——+00

< lim ‘/f[(VK*p) dpm — (VK*p)dp]‘Jr '/f[(VK*pm) — (VK % p)] dpm‘

m—-+00

= lim A,, + Bn,.

m—r+00

By hypothesis (VK % p)(z) is continuous in z. Thus p,, — p implies lim,,_ o0 Ay =
0. We now consider B,,. By Holder’s inequality and hypothesis |(GF3)| there exists € > 0 so

B < 1 fllocllVE * (pm = )l £2(p) < Cllf oot (dwry . (Pms p))-

Since limy, 100 dwy_, (Pm, p) = 0, limy, s 400 By = 0 and v = VK * p, p-almost everywhere.
By Proposition M v! = VK % p € OEs(p). Thus, by the definition of the subdifferential
[2.7), to complete our proof that v! + v? € OE, it suffices to show that

(6.18) /<v ty —Id)dp <0, Vve D(Ex).

We claim that
(6.19) v?p = Vo for 0 € H'(R?) satlsfylng o > 0 and o0 = 0 almost everywhere on {p < 1} .

We now show that this implies (6 . Fix v € D(Ey) and let tZ be the 2-Wasserstein optimal
transport map from p to v. Deﬁne ta = (1 —a)ld+at), a € [0,1], so po = tayp is the
geodesic from p to v. Since p, v € D(Ex), ||pallcc < max{||p||oo, |V]|o} < 1 for all a € [0,1].
The geodesm Pao satisfies the followmg weak form of the continuity equation for all ¢ € C°(R%)

(cf. [2 equation (8.1.4)], [36])

(6.20) /cpdpa /godp / /(th,t” o tEl — t51> dpgdf3 = 0.

Note that, for all 8 € [0, 1] we have ||pgll2 < Hpﬁuwupﬁul/? <1 and
It 065" =t )pslla < NIt o b5 = b5 |2 0511307 < Walp,v).
Furthermore, we also have hmg_m(t poty 5 —tg Yps = (t;, —Id)p in distribution. Finally, since

(tyo tgl - tEl)pﬁ is uniformly bounded in L?(R%) for all § € [0, 1], compactness with respect
to the weak L?(R?) topology and uniqueness of limits implies

(6.21) as B —0, (thoty' —t;)ps— (t) —1d)p in L*(RY).
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Since 0 € H 1(]R“l), approximating it by a sequence in Cg° (Rd) and applying equation (6.20]),

/adpa—/adp—/ /(VU,tZotgl—trglﬁlpgdﬁ—O.
0

As p =1 wherever o # 0, this is equivalent to

;/a( 1) dx = / /<Va,t oty —t§1>d,o5dﬁ.

Since o > 0 and p, < 1, this 1mphes that the left hand side is nonpositive for all « € (0, 1).
Thus, sendlng a — 0 and using (6.21) gives

hmsupa/ /<Vo’, o8 t§6>dp/3dﬁ:/<VU,tZ—Id>dp.

a—0

Since p > 0, the integrand is nonpositive p-almost everywhere. Since p < 1, we obtain
/ (Vo,t, —1d) dz < /(va,t; —1Id)dp <0,
R4

which shows (6.18]).

It remains to show that the claim in equation ( - Since I, is bounded uniformly in m,
50 is ||p||2, and there exists o € L?(R%) with ¢ > 0 so that, up to a subsequence, pI — ¢ in
L?(R?). Combining this fact with (6.16]), we have that for all f € C°(R?),

—/Vfada::— LHE pr%d:c— hm /prmdx— le /fv?ndpm:/vadp.

Since [|v?p|l2 < ||v?| 2 p)||p||oo < 400, we have that v2p = o € H'(R?).
We conclude by showing that o = 0 almost everywhere on {p < 1}, which is equivalent to

(6.22) /O‘(p —1)dx =0.
By Holder’s inequality and the uniform bound on I,
sup [Vl < sup Vo5 (6)/ oml 2o [ oml1y* = 51D 05 225,y < o0
Fix R > 0 and let nr be a smooth, radially decreasing cutoff function,
nr(x) = n(z/R) for n € C*(R?) such that n(x) = 1 for |z| < % and n(z) =0 for |z| > 1.
Then we have

IV(pmnr)lle < [Vomlh +*HV?7|| lomllzs pmnrlle < llpmll2linglle, — and llpmoglle < llpmll

each of which is bounded uniformly in m. By Rellich-Kondrachov (cf. Theorem 13.32]),

there exists a subsequence so that pnp — ong strongly in L'(R%). Since png is uniformly

bounded in L%(R?), we also obtain p'nr — ong strongly in LP(R?) for all 1 < p < 2.
Similarly, by interpolating LP(R%) norms, for any p’ > 2 and m > p'/2,

lomllp <14 [lpmll2m,

which is bounded uniformly in m. Thus, up to a subsequence, p,, — p weakly in L? (R%).
Combining these two facts, we obtain,

(6.23) i [ napi(on ~ Dz~ [ nrotp -1 do

m——+00
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Rewriting the left hand side of (6.23]),
[ ezom = 1yde = [ nater = o dow = [ nnlors - o) dpy

— [ e (672.0) = w(0i25) dpn
where ¥(s,a) := =% and b = 1/m. By Lemma we may control the right hand side by

1 B 1 1
/anm|1+p?nm ' da < /anper/an?nmdx
m m m

which goes to zero uniformly as m — co. Thus, for all R > 0,

/nRa(p 1) da =0,

Sending R — +oo via the monotone convergence theorem, we obtain ((6.22)).
This concludes the proof of the criteria from Theorem In particular, we have

|0Em|(pm) — [0Ec|(p) in L*([0,T)).

Integrating inequality (6.17)), we obtain that for all f € C*°([0,7T]) with f > 0,
T

T . .
| OB o)1t = Yiming [ 0Bl ()1 0)

T
>A i by (6) + 02, (6)]| 2 0 (1)

m—-+00

T
>/ [0t (£) + 0 (0)]| 2 o o) £ (8) .
0

This gives |0 (p(t))] = [[v*(t) + v (t)[| 2(p(s)) for almost every ¢ € [0,T]. On the other hand,

by Remark and the fact that v!(t) + v?(t) € OE.(p(t)), we have the opposite inequality.
Therefore, equality holds and

vl (t) +0v23(t) = VK % p(t) + Vo(t)/p(t)
is the element of OE(p(t)) with minimal L?(p(t)) norm. O

7. NUMERICAL RESULTS

In this section, we apply our theoretical results on the slow diffusion limit to develop a
numerical method to simulate gradient flows and minimizers of the constrained interaction

energy Eo.. For m > mg and p,(fP € D(E;,), Theorem ensures that p,,(t) solves an
aggregation-diffusion equation

(7.1) Otpm — V- (VK * p)pm) = Apim, pm(0) = p¥

if and only if it is a gradient flow of E,,. By Theorem [1.10] gradient flows of E,, converge,
up to a subsequence, to a gradient flow of E.,. Thus, one may approximate the dynamics of
gradient flows of E,, by numerically simulating solutions of equation for m large. By
Theorem minimizers of E,, converge, up to a subsequence and translation, to minimizers
of En. Thus, to numerically approximate minimizers of E.,, one may simulate gradient flows
of E,, for m large, in the long time limit.

We now give several examples illustrating this approach, computed using Carrillo, Patac-
chini, and the first author’s blob method for diffusion . For present purposes, we merely
consider simulations in one dimension, though our method extends naturally to all dimensions
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d > 1. As the primary goal of present work is the rigorous analysis of the slow diffusion limit,
we defer a more comprehensive numerical study to future work. Throughout, we take the reg-
ularization parameter € in the blob method for diffusion to depend on the spatial grid spacing
h according to € = h'9%?. The initial data for our simulations is either patch initial data,

(7.2) P = yq for some Q C R?,
or Barenblatt profiles, for m, > 1 and 7 > 0
_ _ _ 1 B (m,—1
73 0) (1) — 4B _ 28,21/ (m+—=1) — — *
( ) pm (x) T ( KT ’x‘ )—‘,— ’ 5 2 + d(m* _ 1)7 R 2 M )

with K = K(my,d) > 0 chosen so that fpgg) dr =1.

In Figure [1} we simulate minimizers of E,,, to study how the support of minimizers depends
on the diffusion exponent m and the mass of the initial data [ p£2) dx. This complements
our theoretical result from Theorem that the support of minimizers of E,, is uniformly
bounded for m sufficiently large. For the purely attractive quadratic interaction potential
K(z) = 2|z|?, the size of the support of minimizers is decreasing in m for [ p,(g) dr = 1,
constant for [ pfg) dz = 2, and increasing in m for [ pSS) dx = 3. This simulation demonstrates
that monotonicity properties of the size of the support of minimizers strongly depend on the
choice of interaction potential K and the mass of the initial data.

Equilibria of Aggregation-Diffusion Equation for Varying m > 1 and mass

— m=2
. 0751 3
- —_— m=4
I 5050 m
w B — m=5
g T -
S 0251 m=6
— m=7
0.001
151 m=2
(3] m=3
I 1.0 m=4
@ m=35
§ 051 m=6
m=7
0.0
2,
o
I
2 I
S
0,

Position

Figure 1. Minimizers of E,,, for K(z) = 2|z|* and varying m and [ pm, dz. Solutions of
aggregation-diffusion equations are simulated at time 7" = 10 with spatial and temporal dis-
cretizations h = 0.007, k = 10~%. The initial data is a constant multiple of a Barenblatt
profile (equation , ms. =2, 7 =0.15).
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Critical Mass of Set-Valued Minimizers of E, for Varying ¢

1.44

1.24

1.04

0.84

0.6

Critical Mass

0.44

0.24

1.5 2.0 2.5 3.0 3.5
Attraction Exponent, ¢

Figure 2. We approximate the critical mass that determines existence of set-valued min-
imizers of E. by simulating solutions of aggregation-diffusion equations for m = 800,
K(x) = |z|9/q — |z|, h = 0.004, k = 10, and various choices of initial data. For both initial
data given by constant multiples of Barenblatt profiles (equation , m. =2, 7=0.1) and
patch functions (equation , Q = [-1,1]), we observe the existence of set valued minimizers
occurs for the same value of mass. Above, we plot how this critical mass value depends on q.

Next, we consider gradient flows and minimizers of the constrained interaction energy E
with repulsive-attractive power-law interaction potentials of the form

K(z) = [z|"/q = [«]"/p, d=2<p<q.

We take the repulsion exponent p = 1 (the Newtonian singularity in one dimension) and allow
the attraction exponent ¢ to vary. We apply our numerical method for constrained interaction
energies to explore open questions related to minimizers of E, as described in the introduction.

In Figure [2] we investigate the value of the critical mass that determines existence versus
nonexistence of set valued minimizers of Eo,. In particular, for initial data that is either
a constant multiple of a Barenblatt profile or patch function, we observe that there exists
a single value of the critical mass that separates existence and non-existence of set valued
minimizers: in the notation from the introduction, we find M; = M, for all ¢ > 1. We plot
how the value of the critical mass depends on the attraction exponent ¢ > 1.

In Figure 3] we approximate gradient flows of the constrained interaction energy E., for
various choices of attraction parameter ¢ > 1, with initial data at the critical mass from Figure
i.e., the smallest value of mass for which solutions approach a set valued equilibrium. We
contrast the behavior of initial data that is a constant multiple of a Barenblatt profile (equation
(7.3]), m« = 2, 7 = 1)) with initial data that is a constant multiple of a patch function (equation
, Q= [—1,1]). In both cases, gradient flows converge to a characteristic function of height
one on an interval centered at the origin. When ¢ < 2, solutions initially reach height one at
the center of mass of the density and then spread to become a characteristic function. When
q > 2, solutions initially reach height one at the boundary of the support of the density and
then “fill in” the interior to become a characteristic function.

Finally, in Figure [} we compute minimizers of the interaction energy E, for varying choices
of attraction exponent ¢ > 1 and masses up to and including the critical mass from Figure
These simulations appear to confirm the existence of an intermediate phase between the liquid
and solid phase as the generic behavior for ¢ # 2. In the notation of the introduction, these
simulations suggest that M| < M5 for ¢ # 2. In particular, we observe that minimizers of mass
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Constrained Aggregation: Approaching Equilibrium

Barenblatt Initial Data Patch Initial Data
1.2
1.0 m Time 1 Time
0.0 V W 0.0
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P Time ) i Time
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‘ |— 23 :
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Figure 3. We approximate gradient flows of E., by simulating solutions of aggregation-
diffusion equations for m = 800, K(z) = |z|9/q — |z|, h = 0.004, k = 10™*, and initial data
given by constant multiples of Barenblatt profiles (equation , m, = 2, 7 = 0.1) and patch
functions (equation (7.2), © = [—1,1]). We multiply the initial data by the desired mass for
each ¢, i.e. mass 0.68, 1.00, and 1.18, for ¢ = 1.6, 2.0, and 2.4.

M satisty |{p =1}| € (0, M) for all M € [0.36,0.42] when ¢ = 1.4 and for all M € [0.99,1.19]

for ¢ = 2.6.

8. APPENDIX

8.1. Regular Functionals. Consider a functional F : Py(RY) — (—o00,+o0] that is proper,
lower semicontinuous, and satisfies D(|OF|) C P2 4c(R?). Then & € OF(u) is a strong subdiffer-

ential if for all Borel measurable functions t : R — R¢ we have

Ftdu) — F(u) > / (6.t —1d) dpa -+ o[t — 1d [ 12.).

Following Ambrosio, Gigli, and Savaré , Definition 10.1.4], we define the notion of regular

functional as follows.
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Constrained Aggregation: Equilibria for Varying Masses
q=14 q="2 q=256
1.2
Mass Mass
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Figure 4. We approximate minimizers of Eo, by simulating solutions of aggregation-diffusion
equations for m = 800, K (x) = |x|?/q — |z|, h = 0.004, k = 10™*, with initial data given by
constant multiples of Barenblatt profiles (equation (7.3]), m. =2, 7 =0.1).

Definition 8.1. Given F : Pg(Rd) — (=00, +00] proper, lower semicontinuous, and satisfying
D(|0F|) C Paac(RY), F is a regular functional if for any 2-Wasserstein convergent sequence
tn, — p with strong subdifferentials &, € OF (uy,) satisfying

(i) sup,, |F(un)| < 400
(i) supy, [§nllr2(4,) < 00
(iil) there exists &€ € L%(u) so that limy,— oo [ f&ndpn = [ fEdu for all f € CZ(RY),

we have limy, 4 oo F(uy,) = F(p) and € € OF ().

We now provide a sufficient condition on the subdifferential that ensures the energy is regular
and the metric slope is a strong upper gradient. This generalized Ambrosio, Gigli, and Savaré’s
result that A-convex energies are regular [2, Lemma 10.1.3].

Proposition 8.2. Suppose F : PQ(Rd) — (=00, +00] is proper, lower semicontinuous, and
satisfies D(|OF|) C Paqc(RY). Furthermore, suppose that there ewists a continuous function
¥ : [0, 400) = [0,400) with ¥(0) = 0 so that, for any § € OF (u),

F(v) — F(u) > / (6.1 — 1d) dpi — f (. ) (dw (1 ) (. ) for all v € D(F),

where f(u,v) = C(1+ F(u) + F(v)) for some C = C(dw(u,v)) > 0 which is an increasing
function of the distance from p to v. Then F is reqular and the metric slope |OF| is a strong
upper gradient for F.

(8.1)

Proof. We begin by showing that F is regular. Consider a 2-Wasserstein convergent sequence
tn — p with strong subdifferentials &, € OF(u,,) satisfying criteria (i)-(iii) from Deﬁnition
First, we show that £ € OF(u). By assumption,

F(v) — F(un)

> [tent;

By the lower semicontinuity of F, we have liminf,, _,~ F(u,) = F(p). Since sup,, F(u,) < 400
and f is locally bounded on sublevels of F, we have sup,, f(un, V) < +00. Since 1 is continuous,

() ) = (e 2 1.2).

(8.2)

Id) dpy, — f(pon, V)U(dw (pin, v))dw (pin, v) for all v € PQ(Rd).
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Furthermore, arguing as in , Lemma 10.1.3], we have

lim nytt —1d) dpy, = [ (6,87 — 1d) dp.
Hn H

n—-+o00

Therefore, sending n — +oo in (8.2]), we conclude that £ € OF (u).
Now, we show lim,,_ o F(pn) = F(p). Taking v = p in (8.2]) and sending n — +o0, the
previous argument shows that the right hand side converges to 0. Thus,
liminf F(p) — F(un) > 0 <= liminf —F(u,) > —F(p) <= limsup F(u,) < F(p).
n—+00 n—-+00 n—-+00

Combining this with the lower semicontinuity of F, we obtain that lim, 4o F(in) = F(u).
Therefore, F is regular.

We now show that the metric slope |OF| is a strong upper gradient for F. We argue as
in [2, Corollary 2.4.10]. Consider p : (0,T) — P2(R?) that is absolutely continuous in time,
i.e., there exists m € L'(0,T) so that inequality holds. Then its metric derivate |u'|(t)
is well defined. It suffices to show that if u(t) satisfies |OF|(u)|p’| € L*(0,T), then F(u(t)) is
absolutely continuous in time. By [2, Lemma 10.1.5], we have |0F|(x) < +o0 if and only if
there exists some § € OF(u) so that [OF|(u) = [[€][22(,)-

We begin by showing that F(u(t))||(t) € L'(0,T). Without loss of generality, F(u(t.)) <
+oo for some t, € (0,7T), or else F(u(t)) = 400 is constant, hence absolutely continuous.
Furthermore, up to reparametrizing time, we may also assume

sup O (1), (1)) (1), p(82)) < .
te(0,T)
for C = C(dw(u,v)) > 0 as in the definition of f. Applying inequality with p = u(t)
and v = p(ts), we conclude that there exists C’ > 0 so that
F(u(t)) < F(u(te)) + [OF|(u(t))dw (ua(t), pu(ts))
+ F (), () (dw (p(t), pu(t2))) v (), (it ))

< Fu(t2)) + CIOFI(u() + 5 (14 F(u(t) + F(u(r.)))

Rearranging and multiplying by |u/|(t), we conclude that F(u(t))|y'|(t) € L' (0,T).
We now show that F(u(t)) is absolutely continuous in time. Consider the compact subset
S:={u(t):t€[0,T]} C P2(R%) and recall that the global slope on this subset

(Fl) ~ F)*
Ir(p) :== sup ——— —FH—
( ) vES vEL dW(:u” l/)
is a strong upper gradient Theorem 1.2.5]. By inequality (8.1)),

(Fu) —F)™ < |OF| () + C(l +F(p) + F(l/))l/}(dw(m v)).
dW(N? V)

Furthermore, we may assume without loss of generality that F(v) < F(u). Therefore,

Te(p()]1|(t) < |OF] () |1'](£) + C(l + 2F(u(t))>¢(diam5)\u’|(t)-

Therefore, we conclude that I¢(u(t))|i|(t) € L'(0,T). Arguing as in [2, Theorem 1.2.5], we
conclude that F(u(t)) is absolutely continuous. O

Corollary 8.3. Suppose K satisfies hypotheses|(LSC), |(GF1)H(GF3) and m > my. Then E,,
is regular and the metric slope |OE,,| is a strong upper gradient for E,,.

(8.3)
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Proof. The result is an immediate consequence of Proposition [£.3] Proposition [£.6] and Propo-
sition where we appeal to Proposition to ensure that the estimates

1+2 1+ 5
CL+ [1pollm + o1 llm) < Cr(1+ lpollm ™+ llptllm ™) < Co(1+ Enlpr) + En(p2))

hold. 0

8.2. Power-Law Interaction Potentials. In this section, we prove Proposition and
Proposition [£.7

Proof of Proposition[{.5 The result extends Proposition 4.6], where [(GF1)} [((GF2), and
(GF3)| generalize Assumption 4.1]. Define t, := (1 — «)Id +ath; and let p, := ta#po to

be the Wasserstein geodesic from pg to p1. By convexity of the LP-norm, defined by equation
(4.7), along Wasserstein geodesics, ||pa|lm < max{||po||m, ||p1llm} for all a € [0,1]. Then,

L K(pa) = Jim & [K(poon) — K(pa)]

.1
:}ILILI%)% [/K*padpaJrh_/K*padpa]

1
+ o [/K*Pa+h dpa+h — /K*Pa+h dpa}

. 1
= lim o [ 10€ 5 pa) 0t — (K 5 pa) o o] dpo
1

+ 57 [ B * patn) 0 tarn — (K * patn) o ta] dpo

1 1
— }]Lgr[l) % / (k‘a ototh — kqo ta> dpo + o (ka+h otath — Kath © ta) dpo,

for kg(x) := (K * pg)(x). We consider both terms simultaneously by taking f = « or a + h.
By hypothesis [(GF2)| kg(x) is continuously differentiable with respect to z, so

a+h a+h
kﬂota+h —kﬁota = / d’ykﬁo{:ydﬁy:/ <(VK*p[3)Ot,y,t§(1) —Id>dp0d’7.

[0}

Furthermore, since ||pg|ln < max{||pol|m, |lp1]lm}, ensures [|[VK * pgllr2(,,) < +00.
Consequently, we may interchange the order of integration, and add and subtract to obtain

d .1 foth
@K(pa) = %13}) h/a /<(VK * Po) © t,y,tz(l) —1Id > dpodry
(8.4) Je
+ o /. /<(VK * Path) Oty — (VK x pg) oty th1 — 1d ) dpodry.

In order to compute the limits on the right hand side, note that for any o, &, 3, 8 € [0, 1],
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/\(VK*pd)otB — (VK % pa) o tg| |[t01 —1d | dpo
< [I(VE #pa) oty = (VE *pa) o till (o

+IVE % ps — VE * pall12(ps) ] 1628 = Td [ 12

(8.5)

[ /
< f(po, p1) H¢(|t5 - tﬁ|2)) 1Ll2(p0) + ¢(dW(P&,pa))] dw (po, p1)

1/2
< f(po, p1) ¥ (||t5 - tﬁH%z(po)) +¢ (dw(pmpa))] dw (po, p1)

~ /
< Flou.po) [ (13 = B (o 1) + (1 = e oo, p0) | o o, )

In the second inequality, we use hypotheses [(GF2)| and [([GF3)| and the fact that the 2-
Wasserstein distance dominates the (2 — €)-Wasserstein distance for all € > 0; see inequality
In the third inequality we use Jensen’s inequality for the concave function ¥(s).

When a = &, this estimate ensures

B »—>/<(VK*pa) otg, tht —1d ) dpo

is continuous, so that the first term in (8.4) converges to [ ((VK * pa) o ta,thy — Id ) dpo.
Likewise, when 8 = 3, this estimate guarantees that the second term in 1) is bounded by

a+h
Lim f(pzo},LpQ/ %Z)(de(Po»Pl))dW(Po,Pl) dy =0.

Therefore, we conclude

d

@K(pa) = / <(VK*pa) Otoutz(l) - Id>df70-

By (} again, %K(,ua) is continuous for « € [0, 1]. Therefore,

1 g
K(p1) = K(po) + | ——K(pa) da
(8.6) /0 da

= K(po) + ~-K(pa)

To prove the result, it suffices to show that the third term is o (dy (po, p1)). This follows by a
final application of inequality ({8.5)):

1
—i—/ /((VK * Pa) © ta — VI % po, thl — Id>dpoda.
a=0 0

1
/0 /<(VK*pa)ota—VK*p0,t§(1)—Id>dpgdoz

< f(po, p1) [1/1 (dvv(,Ooam)Q)l/2 + Tﬂ(dw(po,m))] dw (po, p1)

Finally, by Lemma there exists ¢, which is an increasing function of dyy (pg, p1), so that
(s?) < cep(s). Therefore, up to increasing the constant in the definition of f(po, p1),

inequality is bounded by

f(po, p1) ¥ (dw (po, p1)) dw (po, p1),
which completes the proof. O
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We now turn to the proof of Proposition [4.7]

Proof of Proposition[f.7, Our proof follows a similar approach as |2, Theorem 10.4.13], gener-
alizing this result to nonconvex, singular interaction potentials K. We begin by proving .
Note that the implication <= is immediate, as the definition of the subdifferential £ € OE,,(p)
requires [|€||z2(,) < +oo. (See inequality )

Suppose |0E,|(p) < +oo. Since p € D(E,), we have |pll, < +oo. Fix £ € L%(p) and
define r, = (1 — a)Id+a¢ and p, := (ra)4p. Suppose either (i) ¢ —Id € C®(R%RY) or
(ii) £ = 0. Note that both assumptions ensure that £ is differentiable almost everywhere (cf.
Aleksandrov’s theorem, [2, Theorem 5.5.4]) and there exists ag, C' > 0 so that for all a € [0, ag],
llpallm < C(cf. |2, Lemma 5.5.3]).

Under either assumption (i) or (ii), the definition of the metric slope (2.5)), Proposition
for K, and |2, Lemma 10.4.4] for S,,, ensure

. Em(ﬂa) - Em(p)
OE,, —1d > limsu —1d
|0Em (p)| 1€ [z2(p) D ) 1€ [z2(p)

(8.7) = lim sup K(pa) = K(p) + Sm(pa) = Sm(p)

a—0 a «

:/<VK*p,§—Id>dp—/pmV-(§—Id)dzn.

Thus, by Holder’s inequality and hypothesis|[(GF1)], there exists C’ > 0 depending on p so that

(8.8) OEm(p)] 1€ = 1d |2y + C'l1€ = 1d || 2y > — / PV - (€~ 1d) da.

First, we suppose ¢ satisfies assumption (i). As inequality (8.8) holds for all f = ¢ —1d €
C>(R%), this implies p™ is a function of bounded variation and the right hand side may be
rewritten as [ Vp™ - (¢ — Id)dz. Applying inequality (8.8) again, we obtain Vp™ € L?(p).
Returning back to , we obtain that

v m
(8.9) H(VK sp) + ~—

< |OEm|(p).
; |0E|(p)

L2(p)

Next, suppose £ = 0. Then inequality (8.8) gives
(10Em(p) + C) M) > d ( [ dx) |

hence p™ € WHH(RY).
To complete the proof, it suffices to show (VK * p) + % € OE,,(p). Remark ensures
L

equality must hold in . Since the subdifferential OE,,(p) is a convex subset of L*(p) and
the L?(p)-norm is strictly convex, the element of OE,,(p) with minimal L?(p)-norm is unique.

By Proposition to show (VK x p) + @ € 0E,,(p) it suffices to show that

Em () — Em(p)

> [ (98 5 p) 4 Y25t =10 ) dp = F(pu) ol () (i), ¥ v € DIE).



40 KATY CRAIG AND IHSAN TOPALOGLU

Since p,v € D(E;,), by Proposition for the subdifferential of K, and by [2, Theorem 10.4.6],
for the subdifferential of S,,,

(810) K@) = K(p) = [ (VK xpit) 1) dp = f(p.0)b(dw () (),
Vo™
. - > ME g -
(8.11) S(v) =Sulp) > [ (Yt =1 dp
Adding together inequalities (8.10)) and (8.11)) gives the result. O

8.3. Elementary Bounds.

Lemma 8.4. Suppose 1 : [0, +00) — [0, +00) is a continuous, nondecreasing, concave function

with ¥(0) = 0. Then for any s, there exists C' so that
Y(s%) < CY(s)?,  for all s €0,35].

Proof. Since 1(s) is concave and ¥ (0) = 0, ¥(s)/s is a decreasing function and 9% (0) =
lim,_,o+ (s)/s exists. First, suppose 971 (0) = 0. Since 9 is concave and nondecreasing, this
implies v = 0, and the result holds.

Now, suppose 914(0) > 0. It suffices to show that 1(s)?/1/(s?) is uniformly bounded below
on [0,3]. Since T (0) > 0 and 1 is increasing, 1(s) > 0 for all s > 0 and (s)?/1(s?) is
continuous and positive on (0, 5], hence bounded below away from s = 0. Furthermore,

Y(s)’
2 5(52)
Thus 1(s)?/1(s?) is bounded below on [0, 5]. O

=01y (0) > 0.

Lemma 8.5. For s >0 and 0 < b < 1/2, define ¥(s,a) := s(!1=%) . Then,
[1(s.6) = (s, 0)| < b(1+5*7).

Proof. Define (s, a) := s=%, so Ly (s,a) = —s'"%log(s). By the mean value theorem, for
0 < b < 1/2, there exists a € [0,b] so that

V(s,) ~ 0(s,0) = b7 (s,a).
If s € [0,1], |%1/J(s,a)‘ <1, so

(812) W}(Sv b) - ¢(37 0)| < b.
If s > 1, we claim that
(8.13) [(s,b) = ¥(s,0)| < bs*™"

This holds since, for s > 1,
[(s,b) —(s,0)| = ‘sl_b - s‘ =s5—s'70<bs? T = s s <bs? = TP < bs? 4o

This is true at s = 1, so it suffices to show the derivative with respect to s of the right-hand
side is larger than the derivative of the left-hand side, i.e.,
(1+b)s® <2bs+1
This is also true at s = 1, so differentiating again, it suffices to show
(1+b)bs®D < 2p
This holds since s > 1 and 0 < b?> < b < 1/2. Combining (8.12)) and (8.13)) gives the result. [
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