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Abstract. We consider a family of interaction functionals consisting of power-law potentials
with attractive and repulsive parts and use the concentration compactness principle to estab-
lish the existence of global minimizers. We consider various minimization classes, depending
on the signs of the repulsive and attractive power exponents of the potential. In the special
case of quadratic attraction and Newtonian repulsion we characterize in detail the ground
state.

1. Introduction

We consider the minimization of energies of the form

E[ρ] :=

∫
RN

∫
RN

K(x− y)ρ(x)ρ(y) dxdy, (1.1)

where

K(x) :=
1

q
|x|q − 1

p
|x|p, for −N < p < q. (1.2)

These functionals are directly connected to a class of self-assembly/aggregation models which
recently have received much attention (see for example, [9, 11, 12, 19, 33, 36, 38, 39, 40, 47,
54, 58, 59]). The aggregation models consist of the following active transport equation in RN
for the population density ρ:

ρt +∇ · (ρv) = 0, v = −∇K ∗ ρ, (1.3)

where K represents the interaction potential and ∗ denotes spatial convolution. This partial
differential equation is the gradient flow of the energy (1.1) with respect to the 2-Wasserstein
metric [1, 26]. Indeed, the evolution equation (1.3) can be written in the form

∂tρ = ∇ ·
(
ρ∇δE[ρ]

δρ

)
,

which is the standard form for the 2-Wasserstein gradient flow [1] of the energy (1.1).
Model (1.3) appears in the study of many phenomena, including biological swarms [54, 58],

granular media [9, 59], self-assembly of nanoparticles [38, 39] and molecular dynamics simu-
lations of matter [37]. The study of solutions to (1.3) (well-posedness, finite or infinite time
blow-up, long-time behavior) has been a very active area of research during the past decade
[11, 12, 19, 33, 47]. It is important to note that the analysis and behavior of solutions to (1.3)
depend essentially on the properties of the potential K. In the context of biological swarms, K
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incorporates social interactions (attraction and repulsion) between group individuals. Poten-
tials which are attractive in nature typically lead to blow-up [11, 40], while attractive-repulsive
potentials may generate finite-size, confined aggregations [36, 47].

By inspecting the equation for v in (1.3) one notes that the nature of a symmetric potential
K(x) = K(|x|) is dictated by the sign of its derivative (K ′ > 0 corresponds to attraction and
K ′ < 0 to repulsion). Hence, for K given by (1.2), the exponent q refers to attraction and p
to repulsion (p and q can be of any sign). The condition q > p is needed to ensure that the
potential is repulsive at short ranges and attractive in the far field — see Figures 1(a)–1(c)
for a generic illustration of K with p < 0 and Figure 1(d) for an example of K with p > 0.
Note that in the regime p < 0 when q > 1, the potential K is positive, convex and K →∞ as
|x| → ∞ whereas when 0 < q < 1, K is still positive and grows indefinitely with |x|; however,
it is not convex. Finally for −N < q < 0, K becomes negative, approaches 0 as |x| → ∞ and
is not convex.
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(a) −N < p < 0 and q > 1

 x¤
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(b) −N < p < 0 and 0 < q < 1
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(c) −N < p < q < 0

 x¤
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(d) q > p > 0

Figure 1. Generic examples of K for various values of p and q.

Potentials in power-law form have been frequently considered in the recent literature on
the aggregation model (1.3) [5, 35, 36, 44, 60]. As shown in these works, the delicate balance
between attraction and repulsion often leads to complex equilibrium configurations, supported
on sets of various dimensions. Indeed, a simple particle model simulation in two dimensions
shows accumulation of the density in different states depending on the powers of the interaction
potential K (see Figures 2 and 3). The dimensionality of local minimizers of (1.1) with K
given by (1.2) was recently investigated in [4]. The repulsion exponent p in [4] is restricted to
be above the Newtonian singularity, i.e., p > 2−N .
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Figure 2. 2D Particle model simulations in the regime p < 0. In 2D, the
Newtonian repulsion is given by − log |x| and below Newtonian repulsion cor-
responds to −2 < p < 0 (see also Remark 3.5).
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Figure 3. 2D Particle model simulations in the regime q > p > 0.

A significant number of recent works exploited the gradient flow structure in the particle
(individual-based) model associated to (1.3). Specifically, the PDE model (1.3) can be regarded
as the continuum limit of the following particle model describing the pairwise interaction of
M particles in RN [18]:

dXi

dt
= − 1

M

M∑
j=1
j 6=i

∇K(Xi −Xj), i = 1 . . .M, (1.4)

where Xi(t) represents the spatial location of the i-th individual at time t. The particle model
(1.4) is the gradient flow of the interaction energy which is the discrete version of (1.1) [44]. It
has been shown that simple choices of interaction potentials in (1.4) can lead to very diverse
and complex equilibrium solutions (e.g., disks, rings and annular regions in 2D, balls, spheres
and soccer balls in 3D) [36, 44, 60].

By staying entirely at the continuum level (that is, working with (1.3) without resorting to
the particle system (1.4)) it is more difficult to identify equilibria. There are only a few works in
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this direction. In [35, 36] the authors study equilibrium solutions to (1.3) which are supported
in a ball, while in [5] the focus is equilibria that are uniformly distributed on spherical shells.
Such equilibria, along with those revealed by simulations of the discrete model, constitute
the main motivation for this work. In this article, we directly study the problem from the
variational point of view, i.e., minimizers of the nonlocal energy (1.1). In particular, we show
the existence of a global minimizer of (1.1) over the classes of uniformly bounded functions
(for p < 0 and q > 0), radially symmetric and uniformly bounded functions (for p < 0 and
q < 0), and probability measures (for p > 0). We address and motivate the assumptions of
radial symmetry and uniform boundedness in the summary below (see Section 2 and Remark
3.6). Also, most of the previous works referenced above consider power-law potentials where
the repulsion-power is assumed to be above Newtonian, that is, p > 2 − N . However, in our
results we only need integrability at the origin, and consequently, p can take values in the
larger range p > −N .

Here we also would like to note that during the review process of this manuscript we noticed
that the radial symmetry and uniform boundedness assumption have been relaxed in the recent
preprints [28, 25] in certain regimes of p and q-values of power-law potentials whereas the results
in [24, 56] extend our existence results to more general potentials.

We conclude the introduction with two remarks concerning related problems.

Remark 1.1 (Repulsion via nonlinear diffusion). A model related to (1.3) considers an interac-
tion kernel which is purely attractive and incorporates repulsive interactions through nonlinear
diffusion. This model reads

ρt +∇ · (ρv) = ∆ρm, v = −∇K ∗ ρ, (1.5)

where K is purely attractive and m > 1 is a real exponent (cf. [7, 8, 14, 17, 20, 21, 22, 23]).
Here the associated energy functional is given by

Enld[ρ] :=
1

2

∫ ∫
K(x− y)ρ(x)ρ(y)dxdy +

1

m− 1

∫
ρm(x) dx.

Using Lions’ concentration compactness lemma, a proof of global existence for this functional
was given in [6]. A detailed study of steady state solutions of (1.5) in one dimension is given in
[22, 23]. Note that these results do not need a uniform L∞-bound on the admissible densities
as the energy Enld controls some Ls-norm of the density function ρ. Also, since the interaction
term in the energy Enld is purely attractive, using symmetric decreasing rearrangement type
arguments one sees that the minimizers have to be radially symmetric.

Similar energies also appear in astrophysics and quantum mechanics and have been exten-
sively studied [2, 3, 52]. In fact, in the seminal paper of Lions [52] wherein he introduces the
concentration compactness lemma, a direct application is the existence of minimizers to a class
of these L1 minimization problems. Many of the arguments in our present article follow his
application.

Remark 1.2 (Thomas-Fermi-Dirac-von Weizsäcker Functionals and the Nonlocal Isoperimet-
ric Problem). Many other functions with interacting attractive and repulsive components have
been studied, for example the Thomas-Fermi-Dirac-von Weizsäcker functional in mathemati-
cal physics [45, 46, 49, 53]. Recently, a binary nonlocal isoperimetric functional appeared in
connection with the modeling of self-assembly of diblock copolymers [29, 30, 31]. Existence
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and non-existence results have been presented in [41, 43, 42, 53]. In dimension N = 3, the
functional has a Newtonian repulsive component as in (1.1) with p = −1. However, the attrac-
tive component does not come from an interaction term but rather by adding a higher-order
regularization. Precisely, for m > 0, the nonlocal isoperimetric problem is to minimize

Enlip[ρ] :=

∫
R3

|∇ρ| +

∫
R3

∫
R3

ρ(x)ρ(y)

4π|x− y|
dx dy

over

ρ ∈ BV (R3, {0, 1}) with

∫
R3

ρ = m.

Since admissible densities ρ are characteristic functions, the first term in the energy is simply
the perimeter of the support. Not only is there a competition between the two terms in Enlip

but they are in direct competition in the following sense: balls are best (least energy) for the
first (attractive) term and worst (greatest energy) for the second (repulsive) term. The latter
point has an interesting history. Poincaré [55] considered the problem of determining the
equilibrium shapes of a fluid body of mass m. In simplified form, this amounts to minimizing
the total potential energy of the region of fluid E ⊂ R3∫

E

∫
E
− 1

C |x− y|
dx dy,

where−(C|x−y|)−1 (C > 0) is the potential resulting from the gravitational attraction between
two points x and y in the fluid. Poincaré showed that, under some smoothness assumptions, a
body has the lowest energy if and only if it is a ball. It was not until almost a century later that
the essential details were sorted via the rearrangement ideas of Steiner for the isoperimetric
inequality. These ideas are captured in the Riesz Rearrangement Inequality and its development
(cf. [48, 51]).

In [29, 30], it was conjectured that there exists a critical mass m0 below which, a unique
minimizer of Enlip exists and is the characteristic function of a ball, and above which, the
minimizer fails to exist because of “mass” escaping to infinity. Note this is in stark contrast to
minimizers of (1.1). The non-existence for sufficiently large m has recently been proved in [53].
Existence of a radially symmetric minimizer (i.e. a ball) for m sufficiently small has recently
been proved in [41, 42]. Whether or not balls are the only minimizers remains open.

2. Statements of Our Results

In this section we state and summarize our main results, placing them in the context of
other recent work.

2.1. Existence of Global Minimizers. We consider the existence of minimizers in two
separate cases: p < 0 and p > 0.

Negative power repulsion p < 0. Figures 2 (a)-(c) show examples of particle simulations
for interaction potentials that consist of Newtonian repulsion1 and an attraction component
with various powers q. In the case of negative p, similar simulations show that particles do
not accumulate on lower-dimensional sets. For example, in [36], the time-dependent density
ρ(·, t) is shown to be uniformly bounded in L∞ for all t > 0 provided the initial condition

1In RN , the Newtonian potential is given by the repulsive part of (1.2) with p = 2 − N . For 2-D particle
simulations we use − log |x| as the Newtonian repulsion. See Remark 3.5 for details.
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ρ0 is in L∞. Also in [4], the authors prove that for any N and −N < p < 0, minimizers do
not accumulate on a set of dimension less than 2 − p and point out that they never observed
minimizers with support of non-integer Hausdorff dimension. This means that when N = 3
the minimizers are indeed functions; however, for N > 3 the result is weaker and only gives a
lower bound. Nonetheless, for p < 0, we expect that minimizers exist in the space of density
functions (and not measures). As a matter of fact, we immediately see that a Dirac delta
integrated against an interaction potential 1/|x|a with 0 < a < N cannot be a minimizer of
the energy (2.1). However, with only an L1-bound on the density, accumulation along a set of
Hausdorff dimension less than N is a possibility – in fact as we discuss below, such possibilities
are indeed generic when p > 0. For p < 0, even though there might be some minor symmetry
defects depending on the choice of number of particles, the simulations with random initial
data suggest that the steady states are radially symmetric.

We thus consider the minimization of the energy E in the class of radially symmetric,
uniformly bounded densities when the attraction-power q is negative. However, we relax the
radial symmetry assumption for positive exponents q > 0. To this end, for p < 0 we take our
admissible class of densities ρ as the space of non-negative, uniformly bounded L1 functions
with fixed mass m when q > 0, and as the space of non-negative, radially symmetric, uniformly
bounded L1 functions with fixed mass m when q < 0. That is, for −N < p < 0, q > p, m > 0
and M > 0, we consider the following variational problem:

minimize E(ρ) =

∫
RN

∫
RN

(
1

q
|x− y|q − 1

p
|x− y|p

)
ρ(x)ρ(y) dxdy (2.1)

over

A :=
{
ρ ∈ L1(RN ) ∩ L∞(RN ) : ρ > 0, ‖ρ‖L∞ 6M, and

∫
RN

ρ(x) dx = m

}
(2.2)

when q > 0; and over

Ar :=
{
ρ ∈ L1(RN ) ∩ L∞(RN ) : ρ = ρ(|x|) > 0, ‖ρ‖L∞ 6M, and

∫
RN

ρ(x) dx = m

}
(2.3)

when q < 0.

For this minimization problem the first main result we obtain is the existence of minimizers.

Theorem 2.1. There exists a minimum of (2.1) in A when −N < p < 0 < q, and in Ar when
−N < p < q < 0.

Note that the uniform boundedness condition is necessary to prevent concentrations as the
energy does not bound any Ls norm for s > 1. It is a technical requirement in the structure
of the proof, where the key idea is to apply Lions’ concentration compactness lemma (Lemma
3.1) to a minimizing sequence, extract a subsequence which is tight in the sense of measures,
and use the uniform boundedness to infer weak convergence in Ls for any 1 < s < ∞. Weak
convergence of the minimizing (sub)sequence is sufficient for lower semicontinuity of the energy
functionals (Lemma 3.3). We repeat that while the uniform boundedness condition on the
density function ρ is a strong assumption, it is supported by results in [36, 35] with p = 2−N ,
as well as other works that consider power kernels with negative repulsion exponent [4, 5, 60].
The uniform boundedness of the density when minimizing similar energies, is also assumed for
example in [2]. As we note in Remark 3.6, this somewhat artificial, albeit justified, assumption
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should not be necessary, but in our opinion its removal would require substantial additional
technical steps.

The radial symmetry assumption on the admissible class when −N < p < q < 0 is also a
technical assumption. Indeed, in the regime −N < p < 0 < q one can relax this assumption
and obtain existence in the general class A. This is possible due to the growth of the kernel
at infinity when q > 0; however, the argument used to relax the radial symmetry assumption
does not apply directly when −N < p < q < 0, as the kernel K does not grow indefinitely but
approach zero in this regime (see Figure 1(c)).

To our knowledge when p < 0 particle simulations in the literature with power-law potentials
of the form (1.2) do not reveal any non-radially symmetric steady states (cf. [4, 15, 32]). Also
given the isotropic and singular nature of the interaction kernel K it seems reasonable to
conjecture that the minimizers of the energy (1.1) defined via power-law potentials are radially
symmetric when p < 0. Proving that the minimizer is radial, though, is a complicated task and
an open problem. Unlike the case of purely attractive kernels (cf. Remark 1.1 and references
[6, 22]) where repulsion is given by a diffusion term, symmetrization via Riesz rearrangement
techniques [51] do not immediately apply here because of the repulsive-attractive combination
in the kernel.

Remark 2.2. As we will show in the next section, the proof of existence of minimizers also
applies for potentials of the form

K(x) = f(|x|)− 1

p
|x|p,

where f(|x|) → ∞ as |x| → ∞ and −N < p < 0. A similar extension could be made in the
case p > 0 as well; however, here one needs the function f to grow faster than |x|p in the long
range.

Positive power repulsion p > 0. The character of the interaction potential K is very
different when p > 0. In this regime K does not have a singularity at zero and it allows
concentration of densities on sets of dimension less than N . Note that Figure 3(a) shows an
associated particle simulation for positive p and q with accumulation along a circle. The results
of [4] support this observation via rigorous bounds on the Hausdorff dimension of the support
of minimizers. Moreover, for p > 0, simulations shows that minimizers need not be radially
symmetric (see Figure 3(b)). Therefore we take the energy E defined over probability measures
(cf. [4, 5]), that is, in the regime q > p > 0, we consider the problem:

minimize E(µ) =

∫
RN

∫
RN

(
1

q
|x− y|q − 1

p
|x− y|p

)
dµ(x)dµ(y), (2.4)

over probability measures µ ∈ P(RN ), endowed with the weak-∗ topology. Following similar
steps as in Theorem 2.1, we prove the existence of a global minimizer.

Theorem 2.3. There exists a minimum in P(RN ) of the problem (2.4) when q > p > 0.

Related to our positive power repulsion case, in [26] the authors consider a class of ag-
gregation equations with interaction potentials which satisfy certain growth and convexity
conditions. Using an approach based on the theory of gradient flows they establish existence
and uniqueness of global-in-time weak measure solutions. Later in [27], again working with
measure solutions, they find sufficient conditions on the interaction potential which guarantee
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the confinement of localized solutions for all times. In both works their use of a measure
theoretic setting as the class of admissible functions enables them a unified analysis of both
particle and continuum models.

2.2. Ground State for Quadratic Attraction and Newtonian Repulsion. After estab-
lishing the existence of global minimizers to the constrained minimization problem (2.1) the
next natural question to ask whether one can characterize the global minimizers. In general,
this is a very difficult problem to tackle. When p = 2 − N , however, the repulsion term cor-
responds to the Coulomb energy which has a variational characterization via the Newtonian
potential. This case was investigated in the context of the evolution equation (1.3) in [36, 35].
There, the authors focused on the existence of symmetric, bounded and compactly-supported
steady states and they showed that for any attraction component q > 2 − N , a unique such
steady state exists. Moreover, numerical experiments suggest that these equilibrium solutions
are global attractors for solutions of (1.3).

In particular, for q = 2, the steady state considered in [36] consists in a uniform density in
a ball. It was shown in [13] that such uniform states (called patch solutions by the authors)
are global attractors for the dynamics of (1.3). Also related to this result, in [34] the authors
show that in 1D the aggregation equation (1.3) has a unique globally stable steady state when
the interaction potential is the sum of Newtonian repulsion and a convex attraction, and the
remark that when q = 2 this steady state is the characteristic function of an interval. We
study these steady states here from a variational point of view, and show that they are global
minimizers of (2.1).

Theorem 2.4. For any m > 0 and M > m
ωN

, the function ρ(x) =
m

ωN
χB(0,1)(x) is the global

minimizer of the problem (2.1) in the admissible class A when q = 2, p = 2 − N , where ωN
denotes the volume of the unit ball in RN and χ denotes the characteristic function of a set.

Remark 2.5. We note that the case q = 2 is rather special. Indeed, since the energy E
is translation invariant we can assume, without loss of generality, that the center of mass of
admissible densities is zero, that is, ∫

RN

xρ(x) dx = 0.

A simple calculation leads to

1

2

∫
RN

∫
RN

|x− y|2ρ(x)ρ(y) dxdy =
1

2

∫
RN

∫
RN

(
|x|2 − 2x · y + |y|2

)
ρ(x)ρ(y) dxdy

= m

∫
RN

|x|2ρ(x) dx.

With the attractive term being simplified, the energy (2.1) can be written as

E(ρ) = m

∫
RN

|x|2ρ(x) dx− 1

p

∫
RN

∫
RN

|x− y|pρ(x)ρ(y) dxdy. (2.5)

3. Proofs of the Theorems

In this section we provide proofs of the Theorems 2.1, 2.3 and 2.4.
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3.1. Existence of Global Minimizers. Negative power repulsion p < 0. To prove the
existence of a minimizer for (2.1) we will use a direct method from the calculus of variations.
The key tool in establishing the existence of minimizers here is the concentration compactness
lemma by Lions [52, Lemma I.1].

Lemma 3.1 (Concentration compactness lemma [52]). Let {ρn}n∈N be a sequence in L1(RN )
satisfying

ρn > 0 in RN ,
∫
RN

ρn(x) dx = m,

for some fixed m > 0. Then there exists a subsequence {ρnk
}k∈N satisfying one of the three

following possibilities:

(i) (tightness up to translation) there exists yk ∈ RN such that ρnk
(· + yk) is tight, that

is, for all ε > 0 there exists R > 0 such that∫
B(yk,R)

ρnk
(x) dx > m− ε for all k;

(ii) (vanishing) lim
k→∞

sup
y∈RN

∫
B(y,R)

ρnk
(x) dx = 0, for all R > 0;

(iii) (dichotomy) there exists α ∈ (0,m) such that for all ε > 0, there exist k0 > 1 and ρ1,k,

ρ2,k ∈ L1
+(RN ) satisfying for k > k0

‖ρnk
− (ρ1,k + ρ2,k)‖L1(RN ) 6 ε,∣∣∣‖ρ1,k‖L1(RN ) − α
∣∣∣ 6 ε, ∣∣∣‖ρ2,k‖L1(RN ) − (m− α)

∣∣∣ 6 ε,
and

dist(supp(ρ1,k), supp(ρ2,k))→∞ as k →∞.

In certain cases, we will use the following special form of the Hardy–Littlewood–Sobolev
inequality to bound the energy from below.

Proposition 3.2 (cf. Theorem 3.1 in [50]). For any −N < p < 0 and f ∈ L2N/(2N+p)(RN )
we have ∫

RN

∫
RN

|x− y|pf(x)f(y) dxdy 6 C(p)‖f‖2
L2N/(2N+p)(RN )

where the sharp constant C(p) is given by

C(p) = π−p/2
Γ(N/2 + p/2)

Γ(N + p/2)

(
Γ(N/2)

Γ(N)

)−1−p/N

with Γ denoting the Gamma function.

Finally, we state and prove a lemma which we will use in establishing the lower semicontinuity
of the energy E. A similar argument appears in the proof of Theorem II.1 in [52].

Lemma 3.3. Let {fn}n∈N ⊂ A (or Ar) and f ∈ A (or Ar) be given such that fn ⇀ f weakly
in Ls(RN ) for some 1 < s <∞. Then

lim
n→∞

∫
RN

∫
RN

fn(x)fn(y)

|x− y|a
dxdy =

∫
RN

∫
RN

f(x)f(y)

|x− y|a
dxdy

where 0 < a < N .
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Proof. First note that∣∣∣∣∣
(∫

RN

∫
RN

fn(x)fn(y)

|x− y|a
dxdy

)1/2

−
(∫

RN

∫
RN

f(x)f(y)

|x− y|a
dxdy

)1/2
∣∣∣∣∣

6

∣∣∣∣∫
RN

∫
RN

(fn(x)− f(x))(fn(y)− f(y))

|x− y|a
dxdy

∣∣∣∣1/2 .
(3.1)

On the other hand, for R > 0 we have that∣∣∣∣∫
RN

∫
RN

(fn(x)− f(x))(fn(y)− f(y))

|x− y|a
dxdy

∣∣∣∣
6

∣∣∣∣∫
RN

∫
RN

(fn(x)− f(x))(fn(y)− f(y))

|x− y|a
χ{|·|<1/R}(|x− y|) dxdy

∣∣∣∣
+

∣∣∣∣∫
RN

∫
RN

(fn(x)− f(x))(fn(y)− f(y))

|x− y|a
χ{|·|>R}(|x− y|) dxdy

∣∣∣∣
+

∣∣∣∣∫
RN

∫
RN

(fn(x)− f(x))(fn(y)− f(y))

|x− y|a
χ{1/R<|·|<R}(|x− y|) dxdy

∣∣∣∣ ,
where χA denotes the characteristic function of the set A. Since fn and f are in A (or Ar),
they are uniformly bounded and ‖fn‖L1(RN ) = ‖f‖L1(RN ) = m. Hence, the above inequality
yields∣∣∣∣∫

RN

∫
RN

(fn(x)− f(x))(fn(y)− f(y))

|x− y|a
dxdy

∣∣∣∣ 6 C1
1

RN−a
+ C2

1

Ra

+

∣∣∣∣∫
RN

∫
RN

(fn(x)− f(x))(fn(y)− f(y))

|x− y|a
χ{1/R<|·|<R}(|x− y|) dxdy

∣∣∣∣ , (3.2)

for some constants C1, C2 > 0 depending only on a, M and N .
For simplicity of presentation, define

g(x− y) :=
1

|x− y|a
χ{1/R<|·|<R}(|x− y|)

and note that g(x− ·) ∈ L1(RN ) ∩ L∞(RN ). Also, define

Fn(x) :=

∫
RN

fn(y)g(x− y) dy and F (x) :=

∫
RN

f(y)g(x− y) dy.

Since fn ⇀ f weakly in Ls(RN ), for all x ∈ RN we have that

Fn(x)→ F (x), as n→∞.

Moreover, since f , fn and g are non-negative functions, we have

‖fn ∗ g‖L1(RN ) = ‖fn‖L1(RN )‖g‖L1(RN ) = ‖f‖L1(RN )‖g‖L1(RN ) = ‖f ∗ g‖L1(RN )

which trivially implies that ‖Fn‖L1(RN ) → ‖F‖L1(RN ). Since |Fn−F | 6 |Fn|+ |F |, the function

|Fn|+ |F | − |Fn − F | is positive. So, applying Fatou’s theorem we get that

lim inf
n→∞

∫
RN

|Fn|+ |F | − |Fn − F | dx >
∫
RN

lim inf
n→∞

|Fn|+ |F | − |Fn − F | dx;
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hence,

2‖F‖L1(RN ) − lim sup
n→∞

∫
RN

|Fn − F | dx > 2‖F‖L1(RN ).

Thus lim supn→0

∫
RN |Fn − F | dx = 0, that is, Fn → F strongly in L1(RN ).

Consequently, Fn → F in Ls(RN ). This follows from the fact that the strong L1(RN )-
convergence implies that Fn(x) → F (x) for a.e. x ∈ RN , and this along with the dominated
convergence theorem implies the Ls(RN )-convergence. Now, since fn ⇀ f weakly in Ls(RN ),
we have that ∫

RN

∫
RN

(fn(x)− f(x))(fn(y)− f(y))g(x− y) dxdy → 0

as n→∞. Letting R→∞ in (3.2) yields, by (3.1), the desired result. �

We now prove the existence theorem for p < 0.

Proof of Theorem 2.1. To prove the theorem we consider the two regimes of q separately, as
the character of the interaction potential K is quite different in the two cases (see Figures
1(a)-(c)). We minimize the energy over A when q > 0 and over Ar when q < 0.

Case 1: −N < p < 0 < q. Let {ρn}n∈N ⊂ A be a minimizing sequence of the problem (2.1),
that is, let {ρn} ⊂ A be a sequence such that

lim
n→∞

E(ρn) = inf{E(ρ) : ρ ∈ A}.

In this regime both terms of the energy are positive. Hence, E(ρ) > 0 for all ρ ∈ A, so the
above infimum exists and is nonnegative. As {ρn}n∈N is a minimizing sequence, for sufficiently
large n the energy E(ρn) is uniformly bounded.

By the concentration compactness lemma (Lemma 3.1) the sequence {ρn}n∈N has a subse-
quence which satisfies one of the three possibilities: “tightness up to translation”, “vanishing”
or “dichotomy”. We will show that “tightness up to translation” is the only possibility. To
this end, suppose “vanishing” occurs. Let R > 0 be arbitrary. Then for k large enough∫

B(0,R)
ρnk

(x) dx 6 sup
y∈RN

∫
B(y,R)

ρnk
(x) dx < m/2.

Since ρnk
∈ A this implies that∫

RN\B(0,R)
ρnk

(x) dx > m/2 > 0. (3.3)

Now we are going to use the fact that the attractive term grows indefinitely at infinity. Since
ρnk

are positive, by (3.3) we have that∫
RN

∫
RN

|x− y|qρnk
(x)ρnk

(y) dxdy >
∫
RN

∫
|x−y|>R

|x− y|qρnk
(x)ρnk

(y) dxdy

> Rq
∫
RN

ρnk
(x)

(∫
|x−y|>R

ρnk
(y) dy

)
dx

> Rqm(m/2).
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Thus

E(ρnk
) >

1

q

∫
RN

∫
RN

|x− y|qρnk
(x)ρnk

(y) dxdy > C Rq.

As q > 0, for sufficiently large R > 0 there exists a sufficiently large k0 > 0 such that for all
nk > k0, E(ρnk

) > CRq > inf{E(ρ) : ρ ∈ A}, contradicting the fact that ρnk
is a minimizing

sequence. Therefore “vanishing” does not occur.
Next, suppose “dichotomy” occurs. Using the notation of Lemma 3.1(iii), let

dk := dist(supp(ρ1,k), supp(ρ2,k))

denote the distance between the supports of ρ1,k and ρ2,k. We can further assume that the
supports of ρ1,k and ρ2,k are disjoint.

Inspecting again the attraction term we get that for some constant C > 0,

1

q

∫
RN

∫
RN

|x− y|qρnk
(x)ρnk

(y) dxdy

>
C

q

∫
supp(ρ1,k)

∫
supp(ρ2,k)

|x− y|qρ1,k(x)ρ2,k(y) dxdy

>
C

q
dqk ‖ρ1,k‖L1(RN )‖ρ2,k‖L1(RN ).

Since dk → ∞ as k → ∞, and ‖ρi,k‖L1(RN ) does not converge to zero, the above estimate

gives that E(ρnk
)→∞, contradicting again the fact that ρnk

is a minimizing sequence. Thus
“dichotomy” does not occur.

Therefore “tightness up to translation” is the only possibility, i.e., there exists a sequence
{yk}k∈N in RN such that

for all ε > 0 there exists R > 0 satisfying m >
∫
B(yk,R)

ρnk
(x) dx > m− ε. (3.4)

Now, let ρnk
(x) = ρnk

(x + yk) and note that E(ρnk
) = E(ρnk

) by translation invariance of
the energy E. Thus, {ρnk

}k∈N is also a minimizing sequence. Since {ρnk
}k∈N ⊂ A, all members

of the sequence are uniformly bounded in L1(RN ) ∩ L∞(RN ) and passing to a subsequence if
necessary, we may assume that

ρnk
⇀ ρ0 weakly in Ls(RN )

for some 1 < s <∞ and some ρ0 ∈ L1(RN ) ∩ L∞(RN ) 2. Moreover, by (3.4),∫
RN

ρ0(x) dx = m,

or in other words, when passing to the limit as k → ∞ the sequence ρnk
does not “leak-out”

at infinity. To show that ρ0 > 0 a.e. let

S := {x ∈ RN : ρ0(x) < 0}.

2In fact, the sequence ρnk
converges weakly to ρ0 in Ls(RN ) for every 1 < s < ∞ because of the uniform

bound on the sequence. The weak convergence holds for s = 1, as well, by (3.4) and since the translation
sequence {yk}k∈N can be taken to be zero by the translation invariance of the energy.
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Then the characteristic function of S, χS , is an admissible test function for the weak conver-
gence of ρnk

, so we get that ∫
S
ρnk

(x) dx→
∫
S
ρ0(x) dx < 0.

However, since ρnk
∈ A, we see that

lim inf
k→∞

∫
S
ρnk

(x) dx > 0;

hence, S has measure zero. Similarly we can show that ‖ρ0‖L∞(RN ) 6M . Thus ρ0 ∈ A.
Next we need to show that the energy is weakly lower semicontinuous. Here, with an abuse

of notation, we will drop the bar on ρn, and simply denote them by ρn.
By Lemma 3.3, the repulsive part is weakly lower semicontinuous and we have that

−1

p

∫
RN

∫
RN

|x− y|pρn(x)ρn(y) dxdy → −1

p

∫
RN

∫
RN

|x− y|pρ0(x)ρ0(y) dxdy (3.5)

as n→∞.
On the other hand, for the attractive part, define

Gn(x) =

∫
B(0,R)

|x− y|qρn(y) dy and G0(x) =

∫
B(0,R)

|x− y|qρ0(y) dy,

for any fixed R > 0. Note that since ‖ρ0‖L∞(RN ) 6 M and q > 0, we see that G0 ∈
L∞(B(0, R)), in particular, G0 ∈ Ls/(s−1)(B(0, R)). Therefore, by the weak convergence of ρn
in Ls(B(0, R)), ∫

B(0,R)
G0(x)[ρn(x)− ρ0(x)] dx→ 0 (3.6)

as n→∞. Also, since ρn are uniformly bounded, taking
∫
B(0,R) | · −y|

q dy ∈ Ls/(s−1)(B(0, R))

as a test function, we see that∫
B(0,R)

ρn(x)[Gn(x)−G0(x)] dx→ 0 (3.7)

as n→∞, by the weak convergence of ρn in Ls(B(0, R)).
Thus, using (3.6) and (3.7), we have that∫

B(0,R)
Gn(x)ρn(x) dx =

∫
B(0,R)

G0(x)[ρn(x)− ρ0(x)] dx

+

∫
B(0,R)

ρn(x)[Gn(x)−G0(x)] dx+

∫
B(0,R)

G0(x)ρ0(x) dx

converges to ∫
B(0,R)

G0(x)ρ0(x) dx

as n→∞. Hence,

lim inf
n→∞

∫
B(0,R)

∫
B(0,R)

|x− y|qρn(x)ρn(y) dxdy =

∫
B(0,R)

∫
B(0,R)

|x− y|qρ0(x)ρ0(y) dxdy.
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Now, by (3.4), for given ε > 0, we can choose R > 0 such that∫
B(0,R)

ρ0(x) dx > m− ε.

Then, for such R, since E(ρ0) < ∞, we can control the excess of the attractive part on
RN \B(0, R) and we get that∫

RN

∫
RN

|x− y|qρ0(x)ρ0(y) dxdy 6
∫
B(0,R)

∫
B(0,R)

|x− y|qρ0(x)ρ0(y) dxdy + Cε

6 lim inf
n→∞

∫
B(0,R)

∫
B(0,R)

|x− y|qρn(x)ρn(y) dxdy + Cε

6 lim inf
n→∞

∫
RN

∫
RN

|x− y|qρn(x)ρn(y) dxdy + Cε.

(3.8)

Letting ε→ 0 and combining with (3.5) yields

inf{E(ρ) : ρ ∈ A} 6 E(ρ0) 6 lim inf
n→∞

E(ρn) = inf{E(ρ) : ρ ∈ A},

that is, ρ0 is a solution to the minimization problem (2.1) in the regime −N < p < 0 < q.

Case 2: −N < p < q < 0. In this regime, the character of the interaction potential is quite
different than in the previous case. Now the attractive term is strictly negative whereas the
repulsive part of the energy E is still strictly positive. We also remind the reader that in
this regime we prove the existence of a global minimizer of the energy under the additional
assumption of radial symmetry on the admissible functions, i.e., in the class Ar. Here we use
the radial symmetry to rule out “dichotomy” and we believe that radial symmetry assumption
can be relaxed in this regime, as well; however, the argument used to rule out “vanishing” of
a minimizing sequence when q > 0 does not apply directly in this case as the kernel K does
not grow indefinitely but approach zero in this regime (see Figure 1(c)).

First, using Proposition 3.2 we see that the attractive term is bounded below, and we
conclude that in this regime

inf{E(ρ) : ρ ∈ Ar} > −∞.
Next, looking at the scaling

ρλ(x) =
1

λN
ρ
(x
λ

)
we see that ρλ ∈ Ar for λ > 1, and the energy of ρλ is given by

E(ρλ) =
λq

q

∫
RN

∫
RN

|x− y|qρ(x)ρ(y) dxdy − λp

p

∫
RN

∫
RN

|x− y|pρ(x)ρ(y) dxdy,

for any given function ρ ∈ Ar. Note that, in particular, we can choose ρ to be the characteristic
function of a ball. Since −N < p < q < 0, for λ large enough we get that E(ρλ) < 0, and
hence,

Im := inf{E(ρ) : ρ ∈ Ar} < 0.

Again, we will make use of the concentration compactness lemma, Lemma 3.4, and show
that for a minimizing sequence ρn the possibilities of “vanishing” and “dichotomy” do not
occur.
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Suppose “vanishing” occurs. Since Im < 0 in this regime and since the repulsive part is
strictly positive, looking at the attractive part we have that

lim inf
n→∞

∫
RN

∫
RN

|x− y|qρn(x)ρn(y) dxdy > 0. (3.9)

Let R > 1 and q = −a for 0 < a < N . Then, as in the proof of Lemma 3.3,∫
RN

∫
RN

|x− y|qρn(x)ρn(y) dxdy =

∫
RN

∫
RN

ρn(x)ρn(y)

|x− y|a
χ{|x|<1/R}(|x− y|) dxdy

+

∫
RN

∫
RN

ρn(x)ρn(y)

|x− y|a
χ{1/R<|x|<R}(|x− y|) dxdy

+

∫
RN

∫
RN

ρn(x)ρn(y)

|x− y|a
χ{|x|>R}(|x− y|) dxdy

6
CmM

RN−a
+
m2

Ra
+Ra

∫
RN

ρn(x)

∫
|x−y|<R

ρn(y) dydx

6
CmM

RN−a
+
m2

Ra
+Ram sup

x∈RN

(∫
|x−y|<R

ρn(y) dy

)
where C is positive constant depending only on a and N , M is the uniform bound on ρn and
m is the mass of ρn, as before.

Since ρn vanishes by Lemma 3.1 (ii), we get that as n → ∞ the last term in the above
inequality is zero; hence,

lim inf
n→∞

∫
RN

∫
RN

|x− y|qρn(x)ρn(y) dxdy 6
CmM

RN−a
+
m2

Ra
.

Letting R→∞, since 0 < a < N , this yields that

lim inf
n→∞

∫
RN

∫
RN

|x− y|qρn(x)ρn(y) dxdy 6 0,

contradicting (3.9). Thus “vanishing” does not occur.
To show that “dichotomy” does not occur, first we need to prove a subadditivity condition

similar to the one in [52]. As in [6, Lemma 1], we can prove a weaker subadditivity condition
which states that

for m1 > m2 we have Im1 < Im2 , (3.10)

where, as above, Imi denotes the infimum of E overAmi
r with mass constraint

∫
RN ρ(x) dx = mi.

Here we choose to display the dependence of the admissible class Ar on the mass by using the
notation Ami

r to avoid confusion.
Suppose m1 > m2 and let ψ ∈ Am2

r be an arbitrary function. For

c :=
m2

m1
< 1

define ρ ∈ Am1
r such that

ψ = c ρ.

Then we have that

E[ψ] = c2E[ρ].
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Note that since Im1 < 0 in this regime and since c2 < 1 we have that

c2 Im1 > Im1 .

Thus

E[ψ] = c2E[ρ] > c2 Im1 > Im1 ,

and taking the infimum of both sides over Am2
r implies that

Im2 > Im1 .

Now, suppose “dichotomy” occurs, that is, there exists α ∈ (0,m) such that for all ε > 0,
there exist k0 > 1 and ρ1,k, ρ2,k ∈ L1

+(RN ) satisfying for k > k0

‖ρnk
− (ρ1,k + ρ2,k)‖L1(RN ) 6 ε,∣∣∣‖ρ1,k‖L1(RN ) − α
∣∣∣ 6 ε, ∣∣∣‖ρ2,k‖L1(RN ) − (m− α)

∣∣∣ 6 ε,
and

dist(supp(ρ1,k), supp(ρ2,k))→∞ as k →∞.
Furthermore, after defining vk := ρnk

− (ρ1,k + ρ2,k) we can assume that

0 6 ρ1,k, ρ2,k, vk 6 ρnk
and ρ1,kρ2,k = ρ1,kvk = ρ2,kvk = 0 a.e. (3.11)

We have that, for any 0 < a < N ,∫
RN

∫
RN

ρnk
(x)ρnk

(y)

|x− y|a
dxdy =

∫
RN

∫
RN

ρ1,k(x)ρ1,k(y)

|x− y|a
dxdy

+

∫
RN

∫
RN

ρ2,k(x)ρ2,k(y)

|x− y|a
dxdy + 2

∫
RN

∫
RN

ρ1,k(x)ρ2,k(y)

|x− y|a
dxdy

+ 2

∫
RN

∫
RN

ρnk
(x)vk(y)

|x− y|a
dxdy −

∫
RN

∫
RN

vk(x)vk(y)

|x− y|a
dxdy.

(3.12)

The last two terms above vanish as k →∞ using the integrability of the kernel around zero,
the uniform bound on ρnk

and the fact that ‖vk‖L1(RN ) → 0. Since dist(supp(ρ1,k), supp(ρ2,k))→
∞ as k →∞, and lim|x|→∞K(|x|) = 0 in this regime, the third term on the right hand side of
(3.12) goes to zero as k →∞.

Again, since dist(supp(ρ1,k), supp(ρ2,k))→∞ as k →∞, we see that one of the components
of ρn is localized and the other component (say ρ2,k, without loss of generality) spreads to
infinity, i.e., dist(0, supp(ρ2,k))→∞ as k →∞. Also, as the supports of ρ1,k, ρ2,k and vk are
disjoint as noted in (3.11) and the functions ρnk

are radially symmetric, so are the functions
ρ2,k. Using the radial symmetry of ρ2,k, and recalling that the kernel K(|x|) approaches zero
as |x| → ∞, we get that

lim
k→∞

∫
RN

∫
RN

K(x− y)ρ2,k(x)ρ2,k(y) dxdy = 0.

This follows from the fact that the radial symmetry of the functions ρ2,k guarantee that their
supports do not extend to infinity in one direction but rather in such a way that one can bound
the energy from below by ∫

S

∫
−S

K(x− y)ρ2,k(x)ρ2,k(y) dxdy,
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where S is a sector defined by x ∈ RN with |x| > R and such that the angle of the vector x
with a fixed direction v is less than a constant angle, say, π/4.

These observations combined with (3.12) imply that

Im = lim
k→∞

∫
RN

∫
RN

K(x− y)ρnk
(x)ρnk

(y) dxdy

> lim inf
k→∞

∫
RN

∫
RN

K(x− y)ρ1,k(x)ρ1,k(y) dxdy

= Iα,

(3.13)

which contradicts the weak subadditivity condition (3.10). Thus “dichotomy” does not occur.
As in the first case, “tightness up to translation” is the only possibility. Therefore the weak

limit ρ0 of the translated sequence ρn satisfies the mass constraint and hence, is a member of
Ar.

The weak lower semicontinuity in this regime follows directly from Lemma 3.3 as both
attractive and repulsive terms of the energy are of the form considered in the lemma and by
(3.4) the assumptions of the lemma are satisfied. We conclude that the minimization problem
(2.1) has a solution when −N < p < q < 0. �

Remark 3.4. The concentration compactness principle suffices to establish a weaker form
compactness so that we can pass to a weak limit in the sequence ρn. However, the sequence
does not necessarily convergence strongly to ρ in any Ls(RN ). Indeed, strong convergence can
fail due to mass leaking out at infinity and/or because of oscillations. By the tightness of the
sequence {ρn}n∈N the former does not happen; but, we cannot rule out the oscillations of ρn.

On the other hand, we note that for functionals which contain a term that is convex in ρ
(cf. Remark 1.1), one can further show that the convergence of {ρn}n∈N is strong (cf. [6, 52]).

Remark 3.5. When N = 2 the Newtonian potential is given by − 1
2π log |x|. Either considering

the logarithmic term as the repulsion in

K(x) =
1

q
|x|q − log |x|, q > 0, x ∈ R2

or as the attraction in

K(x) = log |x| − 1

p
|x|p, −2 < p < 0, x ∈ R2

the proof of Theorem 2.1 applies since the properties of the interaction potential (singularity
at the origin and blow-up at infinity) remain the same as in higher dimensions.

Remark 3.6 (Uniform Boundedness). The uniform L∞ bound is used for admissible den-
sities ρ in the proof of Theorem 2.1 to control the energy near the singularity of K, and provide
weak compactness in some function space. We have motivated, for example from the point of
view of gradient flow dynamics, why this assumption is natural, or more precisely, acceptable.
However, we do not believe it is essential but rather convenient for our proof. In fact, we
believe that the assumption can be relaxed by just taking densities in some Ls (not neces-
sarily uniformly bounded), using tightness of a minimizing sequence to imply convergence of
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measures, and then showing that, due to the negative-power repulsion, finite energy rules out
concentrations (i.e. the densities remain functions). During the review process of this work
we became aware of the work [25] where the authors address this issue when −N < p < 2−N
using an obstacle problem interpretation.

Positive power repulsion p > 0. The main tool in establishing the existence of minimizers
for (2.4) is, again, the concentration compactness principle. We refer to [57, Section 4.3] for
the following lemma.

Lemma 3.7 (Concentration compactness lemma for measures). Let {µn}n∈N be a sequence of
probability measures on RN . Then there exists a subsequence {µnk

}k∈N satisfying one of the
three following possibilities:

(i) (tightness up to translation) there exists yk ∈ RN such that for all ε > 0 there exists
R > 0 with the property that∫

B(yk,R)
dµnk

(x) > 1− ε for all k.

(ii) (vanishing) lim
k→∞

sup
y∈RN

∫
B(y,R)

dµnk
(x) = 0, for all R > 0;

(iii) (dichotomy) there exists α ∈ (0, 1) such that for all ε > 0, there exists a number R > 0
and a sequence {yk}k∈N ⊂ RN with the following property:

Given R′ > R there are non-negative measures µ1
k and µ2

k such that

0 6 µ1
k + µ2

k 6 µnk
,

supp(µ1
k) ⊂ B(yk, R), supp(µ2

k) ⊂ RN \B(yk, R
′) ,

lim sup
k→∞

(∣∣∣∣α− ∫
RN

dµ1
k(x)

∣∣∣∣+

∣∣∣∣(1− α)−
∫
RN

dµ2
k(x)

∣∣∣∣) 6 ε.
Proof of Theorem 2.3. For any µ ∈ P(RN ) we have that

∫
RN dµ(x) = 1. Also when q > p > 0

the interaction potential satisfies K(|x|) > 1/q − 1/p. Thus

inf{E(µ) : µ ∈ P(RN )} > −∞.
Since K(|x|) 6 0 when 0 6 |x| 6 (q/p)1/(q−p) we see that the above infimum is negative.

Now let {µn}n∈N ⊂ P(RN ) be a minimizing sequence of the problem (2.4). Then by the
concentration compactness lemma for measures there is a subsequence of {µnk

}k∈N which
satisfies one of the three possibilities in Lemma 3.7.

Suppose “vanishing” occurs, i.e., for 0 < ε < 1 and R > 0 and for k sufficiently large enough
we have that ∫

B(y,R)
dµnk

(x) < ε

for any y ∈ RN . This implies that∫
RN\B(0,R)

dµnk
(x) > 1− ε > 0.
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Note that since K is a polynomial of |x| there exists a constant Cp,q > 0 depending on p
and q only such that

K(x) > |x|q−p − Cp,q (3.14)

with q − p > 0.
Now looking at the energy and using the indefinite growth of the interaction potential K as

|x| → ∞ (see Figure 1(d)) we see that∫
RN

∫
RN

K(x− y) dµnk
(x)dµnk

(y) >
∫
RN

∫
|x−y|>R

(
|x− y|q−p − Cp,q

)
dµnk

(x)dµnk
(y)

> Rq−p
∫
RN

(∫
|x−y|>R

dµnk
(y)

)
dµnk

(x)− Cp,q

> Rq−p (1− ε)− Cp,q;

hence, for sufficiently large R, there exists k0 > 0 such that the energy E[µnk
] > 0 for all

nk > k0. This contradicts the fact that {µnk
}k∈N is a minimizing sequence.

Similarly, if we assume that “dichotomy” occurs, looking at the energy and using (3.14) we
get that

lim inf
k→∞

∫
RN

∫
RN

K(x− y) dµnk
(x)dµnk

(y) > lim inf
k→∞

∫
RN

∫
RN

K(x− y) dµ1
k(x)dµ2

k(y)

> (R′ −R)q−p α(1− α)− Cp,q.

Again, since q > p > 0 and K(|x|)↗∞ as |x| → ∞, by taking R′ large enough we get that

lim inf
k→∞

E[µnk
] > 0,

a contradiction.
Therefore “tightness up to translation” is the only possibility. As in the case of Theorem

2.1 for q > 0, the centers yk associated with the translation can be taken to be zero by
the translation invariance of the energy. Hence we may assume the sequence of probability
measures, {µn}n∈N is tight. Then, by the Prokhorov’s theorem (cf. [16, Theorem 4.1]) there
exists a further subsequence of {µn}n∈N which we still index by n, and a measure µ0 ∈ P(RN )
such that

µn
weak−∗
⇀ µ0

in P(RN ) as n→∞.
To show weak lower semi-continuity of E(µ) we will proceed as in the proof of Theorem 2.1,

paying attention to the fact that in this regime K becomes negative.
Since the sequence {µn}n∈N is tight, for any given ε > 0 there exists r > 0 such that∫

B(0,r)
dµ0(x) > 1− ε.

Choose R := max{(q/p)1/(q−p) + 1, r}, and define

G̃n(x) :=

∫
B(0,R)

K(x, y) dµn(y) and G̃0(x) :=

∫
B(0,R)

K(x, y) dµ0(y).

As K(x, y) is continuous in x on B(0, R), the sequence of functions G̃n converges uniformly to

G̃ on C(B(0, R)) by the Arzela–Ascoli theorem, using the compactness of the closed ball and
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the equicontinuity of G̃n. Then, by the uniform convergence of G̃n and the weak-∗ convergence
of µn we get that

lim inf
n→∞

∫
B(0,R)

∫
B(0,R)

K(x, y) dµn(x)dµn(y) =

∫
B(0,R)

∫
B(0,R)

K(x, y) dµ0(x)dµ0(y).

Since E(µ0) < ∞, again, the energy on RN \ B(0, R) is controlled and the above equality, as
in (3.8), yields∫

RN

∫
RN

K(x, y) dµ0(x)dµ0(y) 6
∫
B(0,R)

∫
B(0,R)

K(x, y) dµ0(x)dµ0(y) + Cε

6 lim inf
n→∞

∫
B(0,R)

∫
B(0,R)

K(x, y) dµn(x)dµn(y) + Cε

6 lim inf
n→∞

∫
RN

∫
RN

K(x, y) dµn(x)dµn(y) + Cε.

Sending ε to 0 gives the weak lower semi-continuity of E; hence, µ0 ∈ P(RN ) is a solution of
the minimization problem (2.4). �

3.2. Ground State for Quadratic Attraction and Newtonian Repulsion. Finally, going
back to the setting of admissible functions, i.e., working in A defined by (2.2), we will prove
Theorem 2.4 and characterize the ground state when q = 2 and p = 2 − N . To establish
this we need to derive the full Euler–Lagrange equations for the energy E. We obtain these
equations not in the restricted class of radially symmetric densities but in the wider class
(2.2). The same Euler–Lagrange equations were formally obtained in [10] in one dimension
and derived in the context of minimization with respect to the 2-Wasserstein distance in [4].
Similar conditions were considered in [10, Section 2.3]; however, here we take a more direct
and elementary approach in the spirit of a variational inequality.

Lemma 3.8 (First Variation of the Energy). Let ρ0 ∈ A be a minimizer of the energy E.
Then we have

Λ(x) > η a.e. on the set {x : ρ0(x) = 0},
Λ(x) = η a.e. on the set {x : ρ0(x) > 0},

(3.15)

where

Λ(x) := 2

∫
RN

(
1

q
|x− y|q − 1

p
|x− y|p

)
ρ0(y) dy, (3.16)

and η is a constant.

Proof. Proceeding as in [51], let ρ0 be a minimizer of E and let ζ ∈ Z be an arbitrary function.
For 0 6 ε 6 1, consider

ρε(x) := ρ0(x) + ε

(
ζ(x)−

∫
RN ζ(x) dx

m
ρ0(x)

)
. (3.17)

Clearly
∫
RN ρε(x) dx = m. Also, since ζ ∈ Z, we have ρε > 0.

Note that the function

e(ε) := E

[
ρ0(x) + ε

(
ζ(x)−

∫
RN ζ(x) dx

m
ρ0(x)

)]
(3.18)
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is defined on the interval [0, 1]. Indeed, 0 is a boundary point, since for any ε < 0, the
perturbation function ρε can be made negative; hence, it is not a member of the admissible
class.

Now the minimality of ρ0 implies that

e′(0+) =
d

dε

∣∣∣∣
ε=0+

E(ρε) > 0. (3.19)

In explicit terms this means that

d

dε

∣∣∣∣
ε=0+

E(ρε) = 2

∫
RN

∫
RN

(
1

q
|x− y|q − 1

p
|x− y|p

)
ρ0(y)ζ(x) dxdy

− 2

(∫
RN ζ(x) dx

m

)∫
RN

∫
RN

(
1

q
|x− y|q − 1

p
|x− y|p

)
ρ0(x)ρ0(y) dxdy

=

∫
RN

Λ(x)ζ(x) dx− η
∫
RN

ζ(x) dx

=

∫
RN

(Λ(x)− η)ζ(x) dx,

where Λ was defined in (3.16), and

η :=

∫
RN Λ(x)ρ0(x) dx

m
. (3.20)

Hence, we get that ∫
RN

(Λ(x)− η)ζ(x) dx > 0. (3.21)

The inequality (3.21) above holds, in particular, for all nonnegative functions ζ ∈ L1(RN )∩
L∞(RN ) satisfying ∫

RN

ζ(x) dx 6
m

2
.

This, in turn, implies that
Λ(x)− η > 0 a.e.

Moreover, note that η is the average of Λ with respect to the measure ρ0(x)dx, and hence the
condition Λ(x) > η a.e. implies that Λ(x) = η for a.e. x where ρ0(x) > 0. This establishes
(3.15). �

It is evident that in Lemma 3.8, we actually do not need ρ0 to be a minimizer but simply a
critical point in the sense of (3.19) holding for all ζ ∈ Z.

Remark 3.9 (Equipartition of the Energy). Note that the equipartition (up to constants)
of the energy is a necessary condition for criticality. Namely, when for ρ ∈ A, and for any
λ 6= 0 we consider the rescaled function ρλ given by ρλ(x) := (1/λN )ρ (x/λ), then a necessary
condition for criticality (in particular for being a local minimizer) is that

d

dλ

∣∣∣∣
λ=1

E(ρλ) = 0. (3.22)

In particular, if ρ0 ∈ A satisfies (3.22), then∫
RN

∫
RN

|x− y|qρ0(x)ρ0(y) dxdy =

∫
RN

∫
RN

|x− y|pρ0(x)ρ0(y) dxdy (3.23)
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Now we can prove Theorem 2.4.

Proof of Theorem 2.4. The existence of a minimizer was established in Theorem 2.1. Now, first

we note that since M > m
ωN

, the function ρ is in the admissible class A, where ωN = πN/2

Γ(N/2+1)

denotes the volume of the unit ball in RN . Next, we check that ρ is a critical point of the
functional E, i.e., that ρ satisfies (3.15). As noted in Remark 2.5, the attractive term of the
energy simplifies when q = 2. On the other hand, when p = 2 − N the repulsive part is the
Newtonian potential (i.e., −∆y(|x− y|2−N ) = N(N − 2)ωNδx), and

Φ(x) :=

∫
B(0,1)

1

N(N − 2)ωN |x− y|N−2
dy

solves the Poisson problem

−∆Φ(x) =

{
1 if |x| 6 1,

0 if |x| > 1.

Since the right-hand side of the Poisson problem is radial, so is Φ(x). We use the expression
of the Laplacian on RN in hyper-spherical coordinates,

−∆Φ(x) = − 1

rN−1

d

dr

(
rN−1dΦ(r)

dr

)
,

with r = |x|, and integrate once to get

dΦ(r)

dr
=

{
− r
N if r 6 1,

− 1
NrN−1 if r > 1.

Integrating one more time and using the fact that Φ ∈ C1 by elliptic regularity, we get that

Φ(r) =

{
− r2

2N + 1
2(N−2) if r 6 1,

1
N(N−2)rN−2 if r > 1.

Then we calculate the function Λ(x) given by (3.16) to find

Λ(x) = 2

∫
RN

(
1

2
|x− y|2 − 1

2−N
|x− y|2−N

)
m

ωN
χB(0,1)(y) dy

=
m

ωN

(∫
B(0,1)

|x|2 + |y|2 dy

)
+

2m

ωN (N − 2)

∫
B(0,1)

1

|x− y|N−2
dy

=

{
2mN2

N2−4
if |x| 6 1,

m|x|2 + 2m
(N−2)|x|N−2 + mN

N+2 , if |x| > 1.

Clearly, supp(ρ) = {x ∈ RN : |x| 6 1}, and when |x| 6 1, we have Λ ≡ η by (3.20). For
|x| > 1, note that Λ(x) is an increasing function of |x| and equals η when |x| = 1; hence, ρ
satisfies (3.15), and is a critical point of E.
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Note that we can write the repulsive part in (2.5) using the H−1-norm 3, and write the
energy as

E(ρ) = m

∫
RN

|x|2ρ(x) dx+N(N − 2)ωN‖ρ‖2H−1(RN ).

Here, both terms in the energy are strictly convex 4. Since the energy is strictly convex in
every direction and ρ(x) = m

ωN
χB(0,1)(x) is a critical point, it is the global minimizer of the

problem (2.1). �

Remark 3.10. When p = 2 − N the repulsive term is always strictly convex as it can be
written as the square of the H−1-norm of ρ; however, for q > 2 − N , q 6= 2, it is difficult to
check the convexity of the attractive term due to cross-integral terms in the energy.

Remark 3.11. The scaling of the uniform distribution (m/ωN )χB(0,1) can be determined by
looking at the weak criticality condition (3.23). Indeed, when q = 2 and p = 2−N , an explicit
calculation shows that for any given m > 0 the function

ρR(x) :=
m

ωNRN
χB(0,R)(x)

satisfies the weak condition (3.23) if and only if R = 1.
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E-mail address: itopaloglu@math.mcgill.ca


