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Abstract. We consider Riesz-type nonlocal energies with general interaction kernels and

their discretizations related to particle systems. We prove that the discretized energies Γ-

converge in the weak-∗ topology to the Riesz functional defined over the space of probability

measures. We also address the minimization problem for the discretized energies, and prove

the existence of minimal configurations of particles in a very general and natural setting.

1. Introduction

In this note we consider n-particle interaction energies of the form

En(x1, . . . , xn) =
1

n2

∑
1≤i ̸=j≤n

g(xi − xj) , (1.1)

where g : RN → R is a pairwise interaction kernel. These energies are directly related to, and

can be considered as, discrete versions of continuous interaction energies

E(µ) =
∫
RN

∫
RN

g(x− y) dµ(x) dµ(y) (1.2)

defined over probability measures µ ∈ P(RN ). In their discrete or continuum form, such

pairwise interaction energies appear in many biological or physical applications, ranging from

swarming models to models of molecular structure (see e.g. [BCGC24,CRL24,CCY19,Fra23,

Ser24], and references therein).

Some natural questions, raised by Cañizo and Ramos-Lora in [CRL24] (see Section 4),

are whether there exists a nontrivial measure µ ∈ P(RN ) and a sequence of minimizers

(xn1 , . . . , x
n
n) of En such that πn := 1

n

∑n
i=1 δxn

i

∗
⇀ µ as n → ∞; whether the convergence is

true for all sequences of minimizers (up to rigid motions); and whether, in this case, µ is

a minimizer of the continuum energy E . As the authors point out, these questions are also

important to justify the use of discrete models in numerical computations investigating steady

states of the continuum energies. Some positive answers to these questions appear in [CCH14]

and [CnP18]. Carrillo, Chipot, and Huang [CCH14] consider attractive-repulsive interaction

kernels in the power-law form

g(x) =
|x|β

β
− |x|α

α

with β > α ≥ 1, whereas Cañizo and Patacchini [CnP18] consider general kernels which

require some regularity conditions at the origin, and in particular include power-law kernels
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satisfying α > 2 − N . In [CRL24] it is conjectured that the answer to this question should

also be positive when −N < α ≤ 2 −N . In [Ser15, Proposition 2.8] and in [Ser24, Proposi-

tion 3.5], the author uses some robust techniques to address these questions in the presence

of a confining external potential. Our result, contained in Theorem 5, is analogous to those

ones; however, the techniques we use are different, and we do not necessarily require that

the interaction kernels are attractive in long distances. We also mention that these questions

exhibit connections with the theory of dislocations in materials science, and some discrete-

to-continuum Γ-limit results in the literature have similar flavor compared to our setting (see

for example [MPS17, Theorem 1.1]).

Independent to the connection of convergence of minimizers, it is also an interesting en-

deavor to study the approximation of En(πn) and to obtain an asymptotic expansion in terms

of n. Here, with a slight abuse of notation, given the atomic measure πn = 1
n

∑n
i=1 δxi , we

write En(πn) to denote the expression in (1.1). Since there will be no confusion, it is convenient

to extend En to the whole P(RN ):

En(µ) :=

{
En(x1, . . . , xn) if µ = 1

n

∑n
i=1 δxi , with x1, . . . , xn ∈ RN ,

+∞ otherwise .

When g is given by a power-law interaction with −N < α < 0 and β = 2, and when

continuum minimizers are sufficiently regular, Petrache and Serfaty [PS17] obtain a second-

order asymptotic expansion of En(πn) where the first-order term is E(µ). Likewise, in [CnP18]

Cañizo and Patacchini obtain the Γ-convergence of discrete energies En to the continuum

energy E in the narrow topology, again for general kernels that are not more singular than

|x|2−N near the origin.

In this note we consider rather general interaction kernels that merely satisfy some of the

following assumptions:

(H1) g is bounded from below, lower semicontinuous and is in L1
loc(RN );

(H2) lim inf
|x|→∞

g(x) ≥ 0;

(H3) g is continuous in RN \{0}, and radial and decreasing in a neighborhood of the origin.

That is, there exists r̄ > 0 such that whenever 0 < |x| ≤ |y| < r̄, one has g(x) ≥ g(y);

(H4) there exists a measure µ0 ∈ P(RN ) such that E(µ0) < 0.

For simplicity, we will always assume g to be centrally symmetric, i.e. g(x) = g(−x). Notice
that this can always be assumed for free because the energy is unchanged if we replace g(x)

with g(x)+g(−x)
2 . Our results are the following:

• If g satisfies (H1), then En
Γ−→ E in the space P(RN ) endowed with the weak-∗ topology

(Theorem 5).

• If g satisfies (H1), (H2) and (H4), then inf En → inf E as n → ∞, and any limit

point of a sequence πn, for which lim En(πn) achieves lim inf of the infimum of En, is
a minimizer of E (Proposition 6).
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• If g satisfies (H1)–(H4), then En admits a minimizer in the class of n-discrete proba-

bility measures for any n sufficiently large (Theorem 9).

We point out that the condition (H4) is very similar to condition (HE) in [SST15], where

the requirement was E(µ0) ≤ 0 instead of E(µ0) < 0. The role of this condition is crucial;

indeed, in [SST15, Theorem 3.2] it is proved that if g satisfies (H1) and (H2) then there exists

a minimizer for E if and only if (HE) holds. And of course, if minimizers for the measure

problem do not exist, then the discretization of E is pointless when one considers only the

ground states of E .
Perhaps, the main novelty of our work regards the existence of the discrete minimizers,

established in Theorem 9. The so-called Morse potentials g(x) = C1e
−|x|/l1 − C2e

−|x|/l2 are

an example of kernels for which this matter is non-trivial since they are radially decreasing

at large distance (see [CnCP15, Proposition 3.2] for more details). However, we discuss in

Remark 10 some situations where it is much easier to establish the existence of discrete

minimizers.

The plan of the paper is as follows: In Section 2 we state three results that will be used in

the rest of the note. In Section 3 we prove the Γ-convergence of energies, and the convergence

of minimizers. Section 4 is dedicated to the existence of discrete minimizers.

2. Preliminaries

We start by collecting some definitions and notation that we will use in this note. For every

natural number n ≥ 1 we define the space of n-discrete probability measures as the collection

of atomic probability measures that can be written as 1
n

∑n
i=1 δxi , where x1, . . . , xn ∈ RN .

This space is a subset of a nN -dimensional vector space in the space of measures M(RN );

hence, the weak-∗ topology induced by the inclusion in P(RN ) is equivalent to the standard

topology in (RN )n. Since the interaction kernel might have a singularity at zero (such as

the Coulomb kernel), for the n-discrete probability measure πn = 1
n

∑n
i=1 δxi it is better to

consider the discrete counterpart En(πn) = En(x1, . . . , xn) instead of E(πn).
We define the interaction of two measures by E(µ, ν) =

∫∫
g(x−y) dµ(x) dν(y). By ∥µ∥ we

denote the total variation of a measure µ, and by co(·) the convex hull of a set. The constant

C in estimates may increase from line to line.

Let us first state the Euler-Lagrange conditions for the minimizers of E . The proof of this

lemma can be found in [BCT18,CDM16,CP25].

Lemma 1 (Euler-Lagrange Conditions). Suppose that g satisfies (H1). If µ ∈ P(RN ) is a

minimizer of E, then {
ψµ = E(µ) µ-a.e. ,

ψµ ≥ E(µ) L N -a.e. in RN \ spt(µ) ,

where ψµ(x) =
∫
g(y − x) dµ(y). Additionally, ψµ ≤ E(µ) in spt(µ) since ψµ is lower semi-

continuous.
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Next we establish the compactness of the support of any minimizer of E . Although this

result appears in the literature for interaction kernels that are increasing outside a large ball,

here we prove it in a more general setting.

Lemma 2. Suppose that g satisfies (H1), (H2) and (H4). Then, any mimizer µ ∈ P(RN ) of

E has compact support.

Proof. We argue by contradiction, and we suppose that sptµ is not compact. We call inf g =

−C ∈ (−∞, 0). Thanks to (H4) we know that E(µ) < 0, and thus ψµ = E(µ) < 0 almost

everywhere in sptµ. By assumption (H2), there exists a radius R > 0 such that g ≥ E(µ)/4
in RN \BR. Since sptµ is not compact, then there exists R′ > 0 such that

µ(RN \BR′) < min

{
1

3
, −E(µ)

4C

}
.

For any point x ∈ sptµ with |x| > R+R′,

ψµ(x) =

∫
BR′

g(y − x) dµ(y) +

∫
BR+R′\BR′

g(y − x) dµ(y) +

∫
RN\BR+R′

g(y − x) dµ(y)

≥ E(µ)
4

µ(BR′)− Cµ(BR+R′ \BR′) +

∫
RN\BR+R′

g(y − x) dµ(y)

≥ E(µ)
4

− Cµ(RN \BR′) +

∫
RN\BR+R′

g(y − x) dµ(y)

≥ E(µ)
2

+

∫
RN\BR+R′

g(y − x) dµ(y) .

For µ-a.e. x ∈ RN \BR+R′ we have that ψµ(x) = E(µ), and for those points we obtain that∫
RN\BR+R′

g(y − x) dµ(y) ≤ E(µ)
2

.

As a consequence, considering µ̃ = µ (RN \BR+R′) and ν = µ̃
∥µ̃∥ , we have

E(ν) = 1

∥µ̃∥2
E(µ̃) = 1

∥µ̃∥2

∫
RN\(BR+R′ )

(∫
RN\BR+R′

g(y − x) dµ(y)

)
dµ(x)

≤ 1

∥µ̃∥2

∫
RN\BR+R′

E(µ)
2

dµ(x) =
E(µ)
2 ∥µ̃∥

.

Since ∥µ̃∥ ≤ µ(RN \BR′) < 1/3, we get E(ν) < E(µ), contradicting the minimality of µ. □

We also recall the concentration-compactness principle for the convenience of the reader.

This well-known lemma is an essential tool to obtain compactness of minimizing sequences in

variational problems. We refer to [Str08, Lemma 4.3] for the proof of this particular version.

Lemma 3 (Concentration compactness). Let µn ∈ P(RN ) be a given sequence of probability

measures. Then there exists a subsequence (not relabelled) such that one of the following

holds:
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(i) (Compactness) There exists a sequence of points xn ∈ RN such that, for every ε > 0,

there exists R > 0 large enough such that µn(BR(xn)) > 1− ε.

(ii) (Vanishing) For every ε > 0 and every R > 0 there exists n̄ ∈ N such that

µn(BR(x)) < ε ∀x ∈ RN , ∀n > n̄ .

(iii) (Dichotomy) There exist λ ∈ (0, 1) and a sequence of points xn ∈ RN with the

following property: for any ε > 0, there exist R > 0 and two sequences of non-

negative measures µ1n and µ2n so that, for any R′ > R, for every n large enough one

has

µ1n + µ2n ≤ µn ,

sptµ1n ⊂ BR(xn), sptµ2n ⊂ RN \BR′(xn) ,∣∣µ1n(RN )− λ
∣∣+ ∣∣µ2n(RN )− (1− λ)

∣∣ < ε .

3. Convergence of Energies and Minimizers

A natural notion of convergence for functionals is that of Γ-convergence, that we recall

here.

Definition 4 (Γ-convergence). Given a topological space X and a sequence of functionals

Fn : X → R, one says that the sequence {Fn} Γ-converges to F : X → R if the following holds:

(i) for any x ∈ X and any sequence {xn} such that xn → x, one has

F (x) ≤ lim inf Fn(xn) ;

(ii) for any x ∈ X, there exists a recovery sequence, that is, a sequence {xn} with xn → x

and such that

F (x) ≥ lim supFn(xn) .

The next result says that En
Γ−→ E in the space P(RN ) endowed with the weak-∗ topology.

Theorem 5 (Γ-convergence). Suppose that g satisfies assumption (H1). Then En
Γ−→ E.

In particular, if E(µ) < +∞ then any recovery sequence is necessarily given by n-discrete

probability measures, at least for n large.

Proof. Since by definition we have that En(µ) = +∞ whenever µ is not an n-discrete prob-

ability meaure, we can restrict ourselves to consider those measures in the proof of the Γ-

convergence. More precisely, the liminf inequality becomes trivial if all the measures of a

sequence are not n-discrete, while otherwise the liminf coincides with the liminf of the subse-

quence made by the measures which are n-discrete. And concerning the limsup inequality, it

is trivial if E(µ) = +∞, while otherwise the recovery sequence must necessarily be done by

n-discrete measures (up to a finite number, of course). We divide the proof in two steps, one

for the liminf inequality, and one for the limsup one.
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Step 1. Let µ ∈ P(RN ) be given, and let {πn}n be a sequence of n-discrete probability

measures such that πn
∗
⇀ µ. Let us fix K > 0, and consider the truncated kernel gK = g∧K,

with the associated energy EK and its discretizations EK
n . Since the kernel gK is bounded, we

note that the discretized measures have finite energy EK . The truncated kernel gK is lower

semicontinuous, hence standard arguments for weak-∗ convergence imply that

EK(µ) ≤ lim inf
n→+∞

EK(πn) ≤ lim inf
n→+∞

EK
n (πn) +

1

n2
· nK = lim inf

n→+∞
EK
n (πn) ≤ lim inf

n→+∞
En(πn) .

Here the second inequality follows from the trivial estimate gK(0) ≤ K, and the last one is

a consequence of the bound g ∧K ≤ g. Since the parameter K is free, by letting K → +∞,

the monotone convergence theorem guarantees that EK(µ) ↗ E(µ), concluding the Γ-lim inf

inequality.

Step 2. Let µ ∈ P(RN ) be a given probability measure. We have to find a recovery sequence;

hence, obtain a sequence πn
∗
⇀ µ satisfying the lim sup inequality. Of course, if E(µ) =

+∞ then there is nothing to do, because any sequence which converges to µ does the job.

Therefore, without loss of generality, we suppose that E(µ) < +∞, and we look for a sequence

{πn} of n-disrete measures. Since we are interested in finding a sequence of converging

measures, we can also assume that n > 3N .

Our strategy will consist in subdividing RN in a family of rectangles, each of them having

µ-measure almost equal to 1/n, and then to replace the measure µ in each rectangle with

a single Dirac mass, chosen in a suitable way inside the corresponding rectangle. Let us be

precise; we start defining l = ⌈ N
√
n ⌉, so that lN is larger than n, but the ratio lN/n goes to

1. Then, we define the numbers −∞ = a1 ≤ a2 ≤ . . . ≤ al ≤ al+1 = +∞ as

ah = min

{
t ∈ R, µ

(
(−∞, t]× RN−1

)
≥ h− 1

l

}
. (3.1)

Then, we can subdivide µ = µ1 + µ2 + · · · + µl, where each measure µi is concentrated in

the strip [ai, ai+1] × RN−1 and it has mass exactly 1/l. Repeating the same construction

in each strip working with the other coordinates, we end up having subdivided RN in lN

closed rectangles Ri (some of which unbounded), and having written µ =
∑lN

i=1 µi, where

each measure µi has mass 1/lN and it is concentrated on Ri.

We can then estimate the cross-interaction between the different parts µi as

∑
i ̸=j

E(µi, µj) = E(µ)−
lN∑
i=1

E(µi) ≤ E(µ) + | inf g|
(lN )

. (3.2)

Now, the energy E(µi, µj) is the “average”, in the sense of the measures µi and µj , of the

value of g(zi − zj) with points zi ∈ Ri and zj ∈ Rj ; therefore, one can easily guess that it is

possible to choose a special point xi in each rectangle Ri in such a way that

1

l2N

∑
i ̸=j

g(xi − xj) ≤
∑
i ̸=j

E(µi, µj) . (3.3)
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Formally speaking, we define the measure Θ = µ1 ⊗ µ2 ⊗ · · · ⊗ µlN on the space (RN )l
N
, we

define the function G : (RN )l
N → R as

G(z1, . . . , zlN ) :=
∑
i ̸=j

g(zi − zj) ,

and we notice that∑
i ̸=j

E(µi, µj) =
∑
i ̸=j

∫∫
g(zi − zj) dµi(zi) dµj(zj) = (lN )l

N−2
∑
i ̸=j

∫
g(zi − zj) dΘ(z1, . . . , zlN )

= (lN )l
N−2

∫
G(z1, z2, , . . . , zlN ) dΘ(z1, . . . , zlN ) .

Then, there is a point X = (x1, x2, . . . , xlN ) in the support of Θ such that

G(X) ≤ —

∫
G(Z) dΘ(Z) = (lN )l

N

∫
G(Z) dΘ(Z) ,

which by the above estimate precisely implies (3.3). In particular, the fact that X belongs to

the support of Θ implies that each xi belongs to the rectangle Ri.

Now, we are ready to define the n-discrete measure πn. The above construction would

suggest to set πn as the sum of the Dirac masses in the lN points xi, each with mass 1/lN ;

this is not possible since lN is slightly larger than n, so we need a simple adjustment. More

precisely, we define the n-discrete measure πn = 1
n

∑n
i=1 δxi , so basically we “ignore” the last

lN − n points.

Keeping in mind the definition of the energy En, and using (3.3) and (3.2), we have then

En(πn) =
1

n2

∑
1≤i ̸=j≤n

g(xi − xj) ≤
1

n2

∑
1≤i ̸=j≤lN

g(xi − xj) +
2lN (lN − n)

n2
| inf g|

≤ l2N

n2

∑
i ̸=j

E(µi, µj) +
2lN (lN − n)

n2
| inf g| ≤ l2N

n2
E(µ) + 2lN (lN − n+ 1)

n2
| inf g| .

Since by construction lN/n converges to 1, the above estimate yields the limsup inequality

E(µ) ≥ lim sup En(πn) ,

and this fact will conclude the proof once we check that actually πn
∗
⇀ µ.

In order to establish this convergence, let us fix a function ϕ ∈ Cc(RN ), and let us call

ωϕ the corresponding modulus of continuity. Let ε > 0 be fixed, and let us take any n ∈ N.
Consider an index 1 ≤ i ≤ lN such that the rectangle Ri of the above construction has all

sides shorter than ε. For such i, keeping in mind that µi has mass 1/lN , we estimate∣∣∣∣ ∫
Ri

ϕ(x) dµi(x)−
ϕ(xi)

n

∣∣∣∣ = ∣∣∣∣ ∫
Ri

(ϕ(x)− ϕ(xi)) dµi(x) + ϕ(xi)

(
1

lN
− 1

n

)∣∣∣∣
≤
ωϕ(ε

√
N)

lN
+ sup |ϕ|

(
1

n
− 1

lN

)
.

(3.4)

Let now D be a large constant such that the support of ϕ is contained in the cube Q =

[−D/2, D/2]N . For every n, we call In ⊆ {1, 2, . . . , lN} the set of the indices i for which the
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rectangle Ri intersects the cube Q and has some side larger than ε. In order to estimate the

number of indices in In, we note that, among the strips [ai, ai+1]×RN−1 defined through (3.1),

at most D/ε+ 2 can be those which intersect the cube Q and whose width is larger than ε.

As a consequence, and doing the same estimate in all the directions, we immediately have

#In ≤ N

(
D

ε
+ 2

)
lN−1 . (3.5)

As a consequence, keeping in mind (3.4) we can then estimate∣∣∣∣ ∫ ϕ dµ−
∫
ϕ dπn

∣∣∣∣ = ∣∣∣∣ lN∑
i=1

∫
Ri

ϕ dµi −
n∑

i=1

ϕ(xi)

n

∣∣∣∣
≤
∣∣∣∣ lN∑
i=1

∫
Ri

ϕ dµi −
ϕ(xi)

n

∣∣∣∣+ lN − n

n
sup |ϕ|

≤
∑
i/∈In

∣∣∣∣ ∫
Ri

ϕ dµi −
ϕ(xi)

n

∣∣∣∣+∑
i∈In

∣∣∣∣ ∫
Ri

ϕ dµi −
ϕ(xi)

n

∣∣∣∣+ lN − n

n
sup |ϕ|

≤ ωϕ(ε
√
N) + sup |ϕ|

(
lN − n

n

)
+ sup |ϕ|

(
1

lN
+

1

n

)
#In +

lN − n

n
sup |ϕ| ,

and then by (3.5) we get

lim sup
n→∞

∣∣∣∣ ∫ ϕ dµ−
∫
ϕ dπn

∣∣∣∣ ≤ ωϕ(ε
√
N) .

Since this inequality holds for any ε > 0, the desired convergence πn
∗
⇀ µ is established, and

the proof is completed. □

The next result relates the ground states of the discrete energies to the minimum of the

continuum energy. For every n ∈ N we define the ground state energy and the limiting ground

state energy by

mn := inf En , ℓP := lim inf
n→+∞

mn .

Proposition 6. Suppose that g satisfies (H1), (H2), and (H4). Then

ℓP = lim
n→+∞

mn = inf
{
E(µ) : µ ∈ P(RN )

}
. (3.6)

Additionally, any sequence πn for which limn→+∞ En(πn) equals ℓP is precompact in P(RN )

with respect to the weak-∗ convergence (up to translations), and any limit point is a minimizer

of E in P(RN ).

Proof. First of all, the Γ-lim sup inequality of Theorem 5 implies that for every µ ∈ P there

is a recovery sequence πn, and E(µ) ≥ lim sup En(πn) ≥ lim supmn. Since µ is generic, this

implies that ℓP ≤ lim supmn ≤ inf{E(µ)} ≤ E(µ0) < 0, where µ0 is a measure of strictly

negative energy, which exists by (H4).
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Let now {πnk
} be any sequence such that Enk

(πnk
) → ℓP . We claim that the sequence

is precompact in P(RN ) with respect to the weak-∗ topology (up to translations). If this is

true, then there is a subsequence converging to some measure µ ∈ P(RN ), and the Γ-liminf

inequality of Theorem 5 gives that E(µ) ≤ lim inf Enk
(πnk

) = ℓP . Hence, the proof will be

completed once we show the validity of the claim, that is, that the sequence πnk
is precompact

in P(RN ) up to translations.

Without loss of generality, we can assume that each measure πnk
is nk-discrete, and con-

centrated on nk points. With a slight abuse of notation, we will denote these points by

x1, x2, . . . , xnk
(the formally correct notation would be xnk

1 , xnk
2 , . . . , xnk

nk
, but since there

is no risk of confusion we prefer to keep the lighter notation). Thanks to Lemma 3, we only

have to exclude the possibility that either vanishing or dichotomy occur.

Excluding vanishing. Suppose that the vanishing phenomenon in Lemma 3 occurs for a (not

relabelled) subsequence of {πnk
}k. Let ε > 0 and take R > 0 such that g > −ε in RN \ BR.

Then, there exists n̄ ∈ N such that πnk
(BR(x)) < ε for every x ∈ RN whenever nk > n̄. Thus,

we can control the energy of πnk
as

Enk
(πnk

) =
1

n2k

nk∑
i=1

( ∑
j ̸=i

xj∈BR(xi)

g(xi − xj) +
∑
j ̸=i

xj ̸∈BR(xi)

g(xi − xj)

)

≥ 1

nk

nk∑
i=1

((
inf g

)
πnk

(
BR(xi) \ {xi}

)
− επnk

(
RN \BR(xi)

))
≥ ε
(
inf g − 1

)
,

where the last inequality is true since inf g < 0. We deduce that lim inf Enk
(πnk

) ≥ 0, which

is impossible since Enk
(πnk

) → ℓP < 0; thus, the vanishing phenomenon is excluded.

Excluding dichotomy. Suppose now that the dichotomy phenomenon in Lemma 3 occurs

for a (nor relabelled) subsequence of {πnk
}. In this case, the family of points x1, . . . , xnk

representing πnk
contains two subfamilies that interact very weakly. More precisely, up to

reordering the points we have the family x1, . . . , xak with ak
nk

→ λ ∈ (0, 1), and the family

xak+1, . . . , aak+bk with bk
nk

→ 1 − λ so that the distance between any two points in the two

different families is arbitrarily large if k is large enough. Let us then call µ1k and µ2k the

probability measures uniformly distributed on the two subfamilies, i.e.

µ1k =
1

ak

ak∑
i=1

δxi , µ2k =
1

bk

ak+bk∑
i=ak+1

δxi .

Since the distances between points in the two subfamilies become arbitrarily large as k → +∞,

and keeping in mind (H2), we have

lim inf
k→+∞

min
{
g(xi − xj) : 1 ≤ i ≤ ak, ak + 1 ≤ j ≤ ak + bk

}
= 0 . (3.7)



10 DAVIDE CARAZZATO, ALDO PRATELLI, AND IHSAN TOPALOGLU

We can then write

Enk
(πnk

) =
1

n2k

∑
1≤i ̸=j≤nk

g(xi − xj)

=
a2k
n2k

Eak(µ
1
k) +

b2k
n2k

Ebk(µ
2
k) +

2

n2k

ak∑
i=1

ak+bk∑
j=ak+1

g(xi − xj) +
2

n2k

∑
i ̸=j

i∧j>ak+bk

g(xi − xj) .

Now, (3.7) implies that

lim inf
k→+∞

2

n2k

ak∑
i=1

ak+bk∑
j=ak+1

g(xi − xj) ≥ 0 ,

and the fact that (ak + bk)/nk → 1 and that inf g > −∞ implies that

lim inf
k→∞

2

n2k

∑
i ̸=j

i∧j>ak+bk

g(xi − xj) ≥ 0 .

As a consequence, we obtain

ℓP = lim Enk
(πnk

) ≥ lim inf
a2k
n2k

Eak(µ
1
k) + lim inf

b2k
n2k

Ebk(µ
2
k)

≥ lim inf
a2k
n2k

mak + lim inf
b2k
n2k

mbk = ℓP
(
λ2 + (1− λ)2

)
,

which is impossible since ℓP < 0 and λ2 + (1− λ)2 < 1. The contradiction excludes also the

dichotomy phenomenon, and as noticed above this concludes the thesis. □

4. Existence of Discrete Minimizers

In this last section, we are going to prove that there exist minimizers for the energy En for

all n large enough; this will be achieved with Theorem 9. Simple examples show that the sole

assumption (H1) does not guarantee this existence; on the contrary, it is also possible that

for every large n there are no minimizers. To introduce the question, we give a simple proof

of a weaker result (which is not needed in the proof of Theorem 9); namely, that with rather

weak assumptions there are infinitely many indices for which a minimizer exists.

Proposition 7. Suppose that g satisfies (H1) and (H4), and that lim|x|→∞ g(x) = 0. Then

there exists a sequence of indices nk ↗ +∞ such that mnk
is a minimum.

Proof. We argue by contradiction, and we assume that there exists a value ne ∈ N such that

mn is not attained for any n > ne. Let n > ne be any fixed number, and let {πh} be a

sequence of measures such that En(πh) → mn. Notice that there can be no minimizer for

En, thus mn < +∞, and we can assume that all measures πh are n-discrete; hence, πh is

concentrated on the points xh1 , x
h
2 , . . . , x

h
n. Up to a subsequence, we can assume that for any

i, j ∈ {1, 2, . . . , n} the sequence of distances |xhi − xhj | converges to a number di,j ∈ [0,+∞]
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as h → +∞. Note that by construction di,j ≤ di,m + dm,j for any three indices i, j, m ∈
{1, 2, . . . , n}. In particular, {1, 2, . . . , n} is subdivided in some classes of indices, in such a

way that di,j < +∞ if and only if i and j belong to the same class. Up to renumbering, we

can assume that one class is I = {1, 2, . . . , H} for some 1 ≤ H ≤ n. Up to a translation,

we can assume that xhi converges to a point Pi ∈ RN for every 1 ≤ i ≤ H. Calling πI the

H-discrete measure associated to the points P1, P2, . . . , PH , that is, πI = 1
H

∑H
h=1 δPh

, we

claim that

mH = Eh(πI) . (4.1)

To show this property, let us call πh1 (resp., πh2 ) the H-discrete (resp., (n − H)-discrete)

measure associated with the first H (resp., last n−H) points of the support of πh, that is,

πh1 =
1

H

H∑
i=1

δxh
i
, πh2 =

1

n−H

n∑
i=H+1

δxh
i
,

and let us also call dh the minimum of the distances |xhi − xhj | for i and j belonging to two

different classes. Note that dh → ∞ as h→ ∞, and then ηh → 0, where ηh = sup
{
g(v) : |v| ≥

dh
}
. We can now evaluate

En(πh) =
1

n2

∑
1≤i ̸=j≤n

g(xhi − xhj )

=
1

n2

∑
1≤i ̸=j≤H

g(xhi − xhj ) +
1

n2

∑
H<i ̸=j≤n

g(xhi − xhj ) +
2

n2

∑
1≤i≤H<j≤n

g(xhi − xhj )

≥ H2

n2
EH(πh1 ) +

(n−H)2

n2
En−H(πh2 )−

2H(n−H)

n2
ηh .

(4.2)

Now, if (4.1) is false, there is a H-discrete measure π̃I such that EH(π̃I) < EH(πI). We can

then define the n-discrete measure

π̃h =
H

n
π̃I +

n−H

n
π̃h2 ,

where the (n−H)-discrete measure π̃h2 coincides with πh2 , possibly up to a translation in such

a way that the distance between any point in the support of π̃I and any point in the support

of π̃h2 is at least dh. Arguing exactly as in (4.2), only estimating the last term in the second

line from above instead that from below, we get

En(π̃h) ≤
H2

n2
EH(π̃I) +

(n−H)2

n2
En−H(π̃h2 ) +

2H(n−H)

n2
ηh .

Then by (4.2), and keeping in mind that πh1
∗
⇀ πI , we deduce

lim inf
h→∞

En(π̃h)− En(πh) ≤ lim inf

(
H2

n2

(
EH(π̃I)− EH(πh1 )

)
+

4H(n−H)

n2
ηh
)

=
H2

n2
lim inf

(
EH(π̃I)− EH(πh1 )

)
≤ H2

n2

(
EH(π̃I)− EH(πI)

)
< 0 .
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This contradicts the fact that the sequence {πh} realizes the infimum in the definition of

mH ; hence, (4.1) is proved. In particular, since we are assuming that the minimum is never

attained for more than ne points, we deduce that H ≤ ne.

Summarizing, by the above argument we have observed that each of the classes in which we

have subdivided {1, 2, . . . , n} has at most ne points. Calling these classes H1, H2, . . . , HM

with
∑

1≤m≤M Hm = n, we have then Hm ≤ ne for each 1 ≤ m ≤ M . For every h large,

arguing as before it is convenient to write, for each 1 ≤ m ≤M ,

πhm =
1

Hm

H1+···+Hm∑
i=H1+···+Hm−1+1

δxh
i
,

so that

πh =

M∑
m=1

Hm

n
πhm .

By definition, any two points xhi and xhj so that i and j belong to two different classes have

distance at least dh, hence an interaction of at most ηh. But then, evaluating the energy as

in (4.2), we get

En(πh) ≥
M∑

m=1

H2
m

n2
EHm(π

h
m)− n(n− 1)ηh ≥

M∑
m=1

H2
m

n2
inf g − n(n− 1)ηh ,

which, keeping in mind that inf g < 0 by (H4) and letting h→ ∞, implies

mn = lim En(πh) ≥ lim inf
M∑

m=1

H2
m

n2
inf g ≥ lim

M∑
m=1

Hmne
n2

inf g =
ne
n

inf g .

Since this holds true for any n > ne, letting n→ ∞ we obtain that lim infmn ≥ 0, which is im-

possible since by Proposition 6 we know that limn→∞mn = inf{E(µ)} < 0. The contradiction

concludes the proof. □

The next lemma shows that if g is continuous and decreasing in a neighborhood of 0, then

the potential corresponding to a minimizer of E is continuous in the convex hull of the support

of the minimizer.

Lemma 8. Suppose that g satisfies (H1)–(H4), and let µ ∈ P(RN ) be any minimizer of

E. For every ε > 0 there exists ρ > 0 such that, for any x̄ ∈ sptµ ∩ ∂(co(sptµ)) and any

x ∈ Bρ(x̄) \ co(sptµ) so that |x− x̄| = d(x, sptµ), we have

ψµ(x)− ψµ(x̄) < ε .

Proof. The approach here is very similar to the proof of [CP25, Lemma 3.7]. Let S := spt(µ),

that is compact thanks to Lemma 2, let R := diam(S) + r̄, where r̄ is the constant in (H3),

and let ω be the modulus of continuity of g in BR \Br̄/2. We define ρ < r̄/2 as any number

such that ω(ρ) < ε, and we take two points x and x̄ as in the claim. Let us take any z ∈ S;

we claim that

g(z − x) < g(z − x̄) + ε . (4.3)
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If both |z − x| and |z − x̄| are greater than r̄/2, then this is true because∣∣g(z − x)− g(z − x̄)
∣∣ ≤ ω

(
|x− x̄|

)
≤ ω(ρ) < ε .

Instead, if one among |z − x| and |z − x̄| is less than r̄/2, then also the other one is less than

r̄/2+ |x− x̄| ≤ r̄/2+ ρ < r̄, and since by definition |z− x̄| ≤ |z− x| then g(z− x) ≤ g(z− x̄).

Thus, in both cases (4.3) is true. As a consequence, to get the thesis we just have to evaluate

ψµ(x)− ψµ(x̄) =

∫
g(z − x)− g(z − x̄) dµ(z) < εµ(RN ) = ε .

□

We are finally ready to show the existence of minimizers for the discretized energies En
whenever the discretization parameter n is large enough, using the result of Lemma 8. We have

already established that a sequence of asymptotically optimal discrete energies is precompact

(up to translations), but this does not guarantee that there exists a minimizing n-discrete

probability measure for every n large enough. In fact, for every fixed n ∈ N it could be

convenient to consider a discrete measure with a small fraction of the particles that go to

infinity. We will ultimately show that this is not possible because the interaction energy

at infinite distance is (at least) zero, while the average interaction energy of a candidate

minimizer is negative thanks to (H4). Thus it is convenient to “bring back” the particles

which are far away, to be closer to the large portion of the cluster that is converging the in

weak-∗ topology.

Before presenting our last result, let us introduce a little notation. For any n ∈ N, consider
two measures ν1, ν2 of the form

ν1 =
1

n

n1∑
i=1

δPi , ν2 =
1

n

n2∑
j=1

δQj ,

where n1, n2 ≤ n and Pi and Qj are some points in RN . In particular, ν1 and ν2 are n-discrete

measures only if n1 and n2 coincide with n. With a small abuse of notation, we will write

En(ν1, ν2) =
1

n2

n1∑
i=1

n2∑
j=1

g(Pi −Qj) , (4.4)

and we will also write

En(ν1) =
1

n2

∑
1≤i ̸=j≤n1

g(Pi − Pj) =
n21
n2

En1(ν1) . (4.5)

Notice that En(ν1) does not coincide with En(ν1, ν1), because we do not consider self-interaction
of a point with itself; in particular, if g(0) = +∞ (as it happens in many of the main exam-

ples), then En(ν1, ν1) is always +∞. This notation will be useful in our next construction.

Theorem 9. Suppose that g satisfies (H1)–(H4). Then there exists n̄ ∈ N such that, for

every n > n̄, the functional En admits a minimizer.
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Proof. Let us assume that the claim is false. Then, there exists a sequence nk ↗ +∞ such

that every functional Enk
does not admit a minimizer. For every k, we can select a nk-discrete

measure πk, concentrated on the points xk1, x
k
2, . . . , x

k
nk
, such that

Enk
(πk) < mnk

+
1

knk
. (4.6)

Since there is no minimizer for Enk
, we can assume that

max
{∣∣xki − xkj

∣∣ : 1 ≤ i, j ≤ nk

}
> k . (4.7)

By Proposition 6, up to a subsequence and up to translations, the sequence πk weakly*

converges to an optimal measure µ, which by Lemma 2 has compact support, so sptµ ⊂⊂ BR

for some radius R. By (H4), we have α := E(µ) < 0, so by (H2) there is some R′ such that

g(v) ≥ α

4
∀ v ∈ RN , |v| ≥ R′ . (4.8)

Up to renumbering the points, for every k there is a number 0 ≤ ak ≤ nk such that

|xki | ≤ R+R′ ⇐⇒ 1 ≤ i ≤ nk − ak .

In words, the first nk − ak points are in the large ball BR+R′ , and the last ak are outside of

this ball. By (4.7), we have ak ≥ 1 for every k > 2(R + R′); that is, for every large k there

are some points in the support of πk which are very far away. However, since πk
∗
⇀ µ, the

mass of πk inside the ball BR+R′ converges to 1, so

lim
k→∞

ak
nk

= 0 . (4.9)

Let us now write for brevity πk = π′k + π′′k , where

π′k =
1

nk

nk−ak∑
i=1

δxk
i
, π′′k =

1

nk

nk∑
i=nk−ak+1

δxk
i
.

Basically, the measure π′k represents the part of πk which is concentrated in the ball BR+R′ .

Thanks to (4.9), we also have that π′k
∗
⇀ µ. Using the notation (4.4)–(4.5), we have

Enk
(πk) = Enk

(π′k) + Enk
(π′′k) + 2Enk

(π′k, π
′′
k) . (4.10)

Notice now that

Enk
(π′′k) =

1

n2k

∑
1≤i, j≤ak

g(xknk−ak+i − xknk−ak+j) ≥ inf g
a2k
n2k

.

In order to evaluate Enk
(π′k, π

′′
k), we call a′k the number of points in the support of π′k which

are in the annulus BR+R′ \BR. Then, also taking into account (4.8), we have

Enk
(π′k, π

′′
k) =

1

n2k

nk−ak∑
i=1

nk∑
j=nk−ak+1

g(xki − xkj ) ≥
ak(nk − ak − a′k)

n2k
· α
4
+
aka

′
k

n2k
inf g

≥ ak
nk

· α
4
+
aka

′
k

n2k
inf g .
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Again keeping in mind that πk
∗
⇀ µ, together with (4.9) we know that also a′k/nk → 0. As a

consequence, inserting the last two estimates in (4.10) we obtain

lim inf
k→∞

(
Enk

(πk)− Enk
(π′k)

)
· nk
ak

≥ α

2
. (4.11)

This estimate says that the effect that the last ak points have to the energy of πk is extremely

scarce (or even positive), also with respect to their total mass ak/nk. We will find a con-

tradiction by showing that we can replace these points with other ak points, much closer to

the origin, having a greater effect on the energy. Since by (4.6) the measures πk are almost

optimal, this will provide the desired contradiction.

In order to do this, we start by working on the potentials ψπ′
k
and ψµ corresponding to the

measures π′k and µ. Notice that these potentials belong to L1
loc by definition. We claim that

ψπ′
k

∗
⇀ ψµ . (4.12)

To show this property, we fix any ϕ ∈ Cc(RN ), and we call K = sptϕ. We have then∫
ϕ(x)ψπ′

k
(x) dx =

∫
ϕ(x)

(∫
g(x− y) dπ′k(y)

)
dx =

∫ (∫
ϕ(x)g(x− y) dx

)
dπ′k(y) .

Now, notice that ϕ ∗ g is a continuous and bounded function in K + BR+R′ , because g is

an L1
loc function and ϕ ∈ Cc(RN ). As a consequence, since we have already observed that

π′k
∗
⇀ µ, we can pass to the limit obtaining then

lim
k→∞

∫
ϕ(x)ψπ′

k
(x) dx =

∫ (∫
ϕ(x)g(x− y) dx

)
dµ(y) =

∫
ϕ(x)ψµ(x) dx .

We then obtain (4.12). Notice that it has been fundamental to consider the sequence of

measures π′k, which are all concentrated in the ball BR+R′ . The same argument could have

not been done with the original sequence πk, because ϕ ∗ g ist not necessarily continuous and

bounded in the whole RN , and then it is not possible to prove that ψπk
converges to ψµ.

Let us now take an extremal point x̄ of co(sptµ), for instance let x̄ be a point of sptµ

maximizing the distance from the origin. Since we know that ψµ(x̄) ≤ α by Lemma 1, by

Lemma 8 we deduce that ψµ

(
(1 + t)x̄

)
≤ 3

4 α for some small t > 0. Since the potential ψµ is

continuous outside of sptµ, and the point (1 + t)x̄ is by construction outside sptµ, there is a

small cube Q of side η centered at that point such that ψµ(x) ≤ 2
3 α for every x ∈ Q. We can

assume that diamQ < r̄, where r̄ is the constant in (H3).

Let us then consider a given k. We define l = ⌈ N
√
ak ⌉, and we subdivide the cube Q in

lN cubes of side η/l each. If k is large enough, we can take a regular grid of points ykj , with

1 ≤ j ≤ lN , each one being in one of the lN cubes, in such a way that

1

lN

lN∑
j=1

ψπ′
k
(ykj ) ≤

α

2
.

Notice that this is possible by the fact that ψµ ≤ 2
3 α in the whole cube Q, and since by (4.12)

we know that ψπ′
k

∗
⇀ ψµ. Up to renumbering the points, and keeping in mind that lN ≥ ak,
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we can also assume that

1

ak

ak∑
j=1

ψπ′
k
(ykj ) ≤

α

2
. (4.13)

We can then define a competitor to πk as π̃k = π′k + π̃′′k , where

π̃′′k =
1

nk

ak∑
i=1

δyki
.

As in (4.10), we have

Enk
(π̃k) = Enk

(π′k) + Enk
(π̃′′k) + 2Enk

(π′k, π̃
′′
k) . (4.14)

By definition, and keeping in mind (4.13), we can evaluate

Enk
(π′k, π̃

′′
k) =

1

n2k

nk−ak∑
i=1

ak∑
j=1

g(xki − ykj ) =
1

nk

ak∑
j=1

ψπ′
k
(ykj ) ≤

ak
nk

α

2
. (4.15)

In order to estimate Enk
(π̃′′k), let us fix a generic 1 ≤ j ≤ ak. We use the following elementary

fact: there exists a dimensional constant CN > 0 such that, for any ρ > 0 the number of

points in {w ∈ ZN : 0 < |z| < ρ} is less than CNρ
N . Then, keeping in mind that the points yki

with 1 ≤ i ≤ lN are on a grid with side-length η/l, using (H3) and the fact that diamQ ≤ r̄,

we deduce that ∑
1≤i≤ak, i ̸=j

g(yki − ykj ) ≤ CN l
N—

∫
[−η/2,η/2]N

g(z) dz .

Since we know that ak ≥ 1, we have lN ≤ 2N−1ak, so adding the above inequality for all

1 ≤ j ≤ ak we obtain

Enk
(π̃′′k) =

1

n2k

ak∑
j=1

∑
1≤i≤ak, i ̸=j

g(yki − ykj ) ≤
2N−1CNa

2
k

n2k
—

∫
[−η/2,η/2]N

g(z) dz . (4.16)

Inserting (4.15) and (4.16) into (4.14), and keeping in mind that η is small but fixed and

g ∈ L1
loc while ak/nk → 0 by (4.9), we get

lim sup
k→∞

(
Enk

(π̃k)− Enk
(π′k)

)
· nk
ak

≤ α .

Coupling this estimate with (4.11), also keeping in mind that ak ≥ 1, ensures that for k large

Enk
(π̃k) ≤ Enk

(πk) +
1

3
α
ak
nk

≤ Enk
(πk) +

α

3nk
.

However, since π̃k is a nk-discrete measure and by using (4.6) we obtain that for every k large

mnk
≤ Enk

(π̃k) ≤ Enk
(πk)−

α

3nk
≤ mnk

+
1

knk
+

α

3nk
,

which is impossible for k > (−α)−1. The contradiction shows the thesis. □
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Remark 10. It is easy to prove the existence of minimizers for En for every n ∈ N when g

approaches zero from below at infinity. In fact, in this case it is not convenient to send some

mass at infinity since at some finite (but maybe large) distance the interaction is strictly

negative (see [BL15, Section 1.2]). In a similar way, it is easy to prove the existence of

minimizers of En for every n ∈ N when g → +∞ at infinity (see [CnP18, Theorem 4.1]).
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[BCGC24] Rafael Bailo, José A Carrillo, and David Gómez-Castro, Aggregation-diffusion equations for collec-

tive behaviour in the sciences, arXiv preprint arXiv:2405.16679 (2024).

[BCT18] Almut Burchard, Rustum Choksi, and Ihsan Topaloglu, Nonlocal shape optimization via interac-

tions of attractive and repulsive potentials, Indiana Univ. Math. J. 67 (2018), no. 1, 375–395.

[BL15] Xavier Blanc and Mathieu Lewin, The crystallization conjecture: a review, EMS Surv. Math. Sci.

2 (2015), no. 2, 225–306. MR 3429164
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[CnCP15] José A. Cañizo, José A. Carrillo, and Francesco S. Patacchini, Existence of compactly supported

global minimisers for the interaction energy, Arch. Ration. Mech. Anal. 217 (2015), no. 3, 1197–

1217.
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https://www.fwf.ac.at/en/research-radar/10.55776/EFP6


18 DAVIDE CARAZZATO, ALDO PRATELLI, AND IHSAN TOPALOGLU

[Ser24] , Lectures on Coulomb and Riesz gases, arXiv preprint arXiv:2407.21194 (2024).
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