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Abstract. We characterize the maximizers of a functional involving the minimization of the

Wasserstein distance between equal volume sets. This functional appears as a repulsive inter-

action term in some models describing biological membranes. We combine a symmetrization-

by-reflection technique with the uniqueness of optimal transport plans to prove that balls

are the only maximizers. Further, in one dimension, we provide a sharp quantitative version

of this maximality result.

1. Introduction

In this paper we study a variational problem involving the Wasserstein distance between

equal volume sets. Specifically, for any p > 1 we consider the following energy defined on

subsets of RN :

Wp(E) := inf
{
Wp(L

N E,L N F ) : |F | = |E|, |E ∩ F | = 0
}
, (1.1)

where Wp(µ1, µ2) is the p-Wasserstein distance between two measures µ1, µ2 ∈ M+(RN ) with

µ1(RN ) = µ2(RN ) < +∞. Here L N denotes the Lebesgue measure in RN , and for any

measurable set E ⊂ RN , we use the notation |E| = L N (E).

The functional (1.1) appears in [BCL20], where Buttazzo, Carlier and Laborde investigate

the Wasserstein distance between two mutually singular measures for any p ≥ 1. In particular,

given a measure µ they prove that the infimum is achieved among measures that are singular

with respect to µ. They also show that, when the admissible class consists of densities bounded

by 1, the optimal solution is given by the characteristic function of a set.

In [BCL20] the authors also introduce and analyze the perimeter regularization of (1.1).

Namely, they consider the problem

inf
{
P (E) + λWp(Ln E,Ln F ) : E,F ⊂ RN , |E ∩ F | = 0, |E| = |F | = 1

}
, (1.2)

and show, for any λ > 0, the existence of minimizers when admissible sets E and F are

required to be subsets of a bounded domain Ω. This problem (with p = 1) is introduced

by Peletier and Röger as a simplified model for lipid bilayer membranes where the sets E

and F represent the densities of the hydrophobic tails and hydrophilic heads of the two part

lipid molecules, respectively [PR09,LPR14]. The perimeter term accounts for an interfacial

energy arising from hydrophobic effects, while the Wasserstein term models the weak bonding

between the head and tail particles.
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When posed over the unbounded space, Buttazzo, Carlier and Laborde prove the existence

of minimizers for the problem (1.2) in two dimensions. Xia and Zhou [XZ21] extend this

result to higher dimensions but under the additional assumptions that λ is sufficiently small

and that p < n/(n − 2). Recently, Novack, Venkatraman and the third author [NTV23]

prove that minimizers to (1.2) exist in any dimension and for all values of λ > 0 and p ∈
[1,∞). Simultaneously, Candau-Tilh and Goldman [CTG22] also obtain the existence of

minimizers via an alternative argument and characterize global minimizers in the small λ

regime. The analysis in [CTG22] and [NTV23] show that there is a direct competition between

the perimeter and the Wasserstein terms in (1.2). This, also as pointed out by Rupert Frank

to the third author, leads to the question whether the functional (1.1) is maximized when the

set E is a ball. We investigate this question in this paper when p > 1.

It often happens that we need to relax a functional to exploit some compactness. We

denote by Am the class of admissible densities with mass m that we use to relax the problem,

i.e.,

Am :=

{
ρ ∈ L1(RN ) : 0 ≤ ρ ≤ 1,

∫
ρ dx = m

}
.

We will use the shorthand notation A := A1 when we deal with probability densities. We

define the relaxation of (1.1) to densities ρ with 0 ≤ ρ ≤ 1 as follows:

Wp(ρ) := inf

{
Wp(ρ, ρ

′) : 0 ≤ ρ′, 0 ≤ ρ+ ρ′ ≤ 1,

∫
ρ′ dx =

∫
ρ dx

}
. (1.3)

Our main result in this paper is the following theorem.

Main Theorem. The only maximizer of (1.3) in the class Am, up to translations, is the

characteristic function of a ball B with |B| = m.

By [DPMSV16, Proposition 5.2] in the case p = 2, and by the same result combined

with [BCL20, Theorem 3.10] and [CTG22, Proposition 2.1] in the case p ̸= 2, the expression

(1.3) extends the definition on sets given in (1.1). By these results, we also have that for any

ρ ∈ Am there is a unique density ηρ realizing (1.3) when p > 1. Note that, for p > 1 [Vil03,

Theorem 2.44] guarantees that there is only one optimal transport plan πρ between ρ and ηρ,

and it is induced by a map.

The class of transport plans, which we will call admissible plans, that play a role in the

definition of Wp(ρ) is given by

APρ :=
{
π ∈ M+(RN × RN ) : (p1)#π = ρL N , ρL N + (p2)#π ≤ L N

}
,

where M(RN ) denotes the set of signed Borel measures in RN , and M+(RN ) ⊂ M(RN ) denotes

the set of non-negative measures. Here p1 and p2 are the two usual projections from RN ×RN

in RN . Notice that, thanks to the properties of the push-forward, it is automatically true

that the density of (p2)#π with respect to L N belongs to Am whenever ρ ∈ Am and π ∈ APρ.
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Remark 1.1. We point out that the energy Wp(ρ) can be defined whenever we have a metric

space with a reference measure (in our case, the euclidean space RN endowed with L N ). If

(X, d) is a Polish metric space, and γ ∈ M+(X) is a Borel measure, then for any density

ρ : X → [0, 1] we can define its Wasserstein energy as

Wp(ρ) := inf

{
Wp(ργ, ρ

′γ) : 0 ≤ ρ′, ρ+ ρ′ ≤ 1,

∫
ρ′ dγ =

∫
ρ dγ

}
,

and the p-Wasserstein distance can be defined in any metric space. We continue to denote

by APρ the set of admissible plans, i.e.

APρ = {π ∈ M+(X ×X) : (p1)#π = ργ, ργ + (p2)#π ≤ γ} .

We cannot expect to have many invariance properties in an abstract setting, but some

analytic-flavoured features could be retrieved in wide generality. We will not use this ab-

stract formulation in this paper, with the exception of Proposition 3.3 where we consider the

space X = R+ with a weight. This appears because in Section 3 we reduce to radial densities,

and it is convenient to look at them as 1-dimensional densities (a weight pops up because of

the coarea formula).

Plan of the paper. In Section 2 we introduce some preliminary results that are useful for the

problem. After recalling briefly some well-known theorems about the existence and uniqueness

of the optimal transport map, we introduce some very simple properties of the functional Wp

that were essentially already present in the literature for slightly different problems. In

particular, Lemma 2.6 is devoted to the saturation of the constraint in a certain region, and

Corollary 2.7 provides a uniform control on the transport distance. These two results are

quite robust, as they do not require any geometric property of the Euclidean space, but just

its metric-measure structure. Lemma 2.9 and Lemma 2.10 are an original contribution. The

first one shows the continuity of the functional Wp with respect to the weak∗ convergence

(when there is no loss of mass), and it is fundamental to prove the existence of maximizers

for Wp. The second one, instead, shows that some symmetries of a density ρ can be inherited

by the optimal plan πρ that realizes Wp(ρ). In Section 3 we deal with the maximizers of

Wp, whose existence is proved in Proposition 3.2 applying the concentration compactness

principle. This is a building block also for our successive characterization of the maximizers,

since we combine a symmetrization technique and the uniqueness of the optimal transport

plan to show that the maximizers have some symmetry. In fact, our plan to characterize them

is the following:

(i) prove that the segments maximize a 1-dimensional weighted version of Wp, in Propo-

sition 3.3;

(ii) prove that, if ρ is a given maximizer, then the optimal transport plan realizing Wp(ρ)

is radial. This is contained in Corollary 3.5, as a consequence of Lemma 3.4;

(iii) combine the first two points to show that the maximizers have to be star-shaped

sets, and then conclude that the ball is the only possible maximizer thanks to the
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saturation of the constraint exposed in Lemma 2.6. This is contained in Theorem 3.6,

and it is our main contribution.

Finally, in Section 4 we prove a quantitative version of this maximality result in one di-

mension, where we show that the deficit of maximality is controlled from below by the square

of an asymmetry given as the L1 distance between the ball and any density. Our inequality

is asymptotically sharp, in the sense that the exponent of the asymmetry cannot be lowered.

A few days before submitting this paper, we became aware of the independent work by

Candau-Tilh, Goldman and Merlet [CTGM] (posted on arXiv on September 6, 2023) studying

the same maximization problem. Their result is more general, as it considers a broader class

of cost functions in the transport problem. Our strategy, pursued in Section 3, instead, is

more geometric, and we circumvent the need to introduce Kantorovich potentials to deal with

the transport problem.

Notation. Throughout the paper, with an abuse of notation, we will denote the Wasserstein

distance between two disjoint set, Wp(L N E,L N F ), by Wp(E,F ). By Br(x) we will

denote the open ball of center x and radius r, and we will write Br for Br(0). The cube of side

length 2l centered at the origin will be denoted by Ql = [−l, l]N ⊂ RN ; hence, Ql(x) = x+Ql.

For ρ ∈ A by ηρ we will denote any density in A such that Wp(ρ) = Wp(ρ, ηρ). Note that for

p > 1 we have that ηρ is unique (cfr. [BCL20, Remark 3.11]). Similarly, for ρ ∈ A, πρ will

denote the optimal plan Wp
p (ρ) =

∫
|x − y|p dπρ(x, y), and Tρ is the optimal transport map

that induces πρ. If we have a density f , we will sometimes use the short-hand notation T#f

to denote the push forward of the measure T#(fL N ).

2. Preliminary results

2.1. The optimal transport problem. We introduce in this section the optimal transport

problem. The general theory is well developed, and goes far beyond the needs of this paper.

We state some results, and we define the optimal transport problem, just in the setting that

we need. The interested reader may find much more general statements, and much deeper

developments, in the references that we cite, as well as in other books on the subject. Instead,

one of the crucial restrictions that we impose is to work with cost c(x) = |x|p with p > 1 and

(mostly) in the Euclidean space RN . This is necessary when we characterize the maximizers of

Wp since we use some uniqueness result valid for these special cost functions, while some parts

of our strategy work also for p = 1 with a slightly different discussion. The next definitions

describe rigorously our framework.

A quite general setting for the optimal transport problem is that of Polish metric spaces,

that are defined as follows.

Definition 2.1 (Polish metric space). A metric space (X, d) is Polish if it is complete and

separable.



MAXIMIZERS OF NONLOCAL INTERACTIONS OF WASSERSTEIN TYPE 5

Definition 2.2 (Push forward). Let (X, dX) and (Y, dY ) be two Polish metric spaces. Given

f : X → Y a Borel function, and given a measure µ ∈ M(X), the push forward of µ induced

by f is a new measure denoted by f#µ. It is defined as follows: for every A ⊂ X Borel, we

have that

(f#µ)(A) = µ(f−1(A)).

Given (X, d) a Polish metric space, p > 1 a real exponent, and given µ1, µ2 ∈ M+(X) with

µ1(X) = µ2(X) < +∞, we can consider the optimal transport problem with cost c(x) = |x|p:

W p
p (µ1, µ2) = inf

{∫∫
X×X

|x− y|p dπ(x, y) : π ∈ M+(X ×X) : (p1)#π = µ1, (p2)#π = µ2

}
.

It is well known that for every couple of marginals µ1 and µ2 the infimum is attained (see

[Vil03, Theorem 1.3] for a more general result). In some special cases, there are some structure

theorems for the optimal transport plans, i.e. those measures π that realize the aforementioned

infimum. The following is such a result that holds for strictly convex costs.

Theorem 2.3. [Vil03, Theorem 2.44] Let p > 1 be given, and µ1, µ2 ∈ M+(RN ) be two

measures with µ1(RN ) = µ2(RN ) < +∞. Suppose that µ1 ≪ L N and that Wp(µ1, µ2) < +∞.

Then, there is a unique optimal transport plan π, and it is of the form

π = (Id, T )#µ1,

where T denotes the unique optimal transport map.

In Section 3 it is crucial to characterize the maximizers in one dimension to later pass to

higher dimension. Our task is simplified in one dimension because the transport problem has

a very easy solution.

Theorem 2.4. [Vil03, Remarks 2.19] Let p > 1 be given, and let µ1, µ2 ∈ M+(R) be two

measures with µ1(R) = µ2(R) < +∞. If they are non-atomic, then the only optimal transport

map realizing Wp(µ1, µ2) is monotone.

2.2. Properties of Wp. The most basic fact is the following existence theorem.

Theorem 2.5. [DPMSV16, Section 5] Let p > 1 be given. For any m > 0 and for any

ρ ∈ Am, there exists a unique density, called ηρ ∈ Am, realizing the infimum in (1.3).

Combining this result with Theorem 2.3 we obtain the existence and uniqueness of the

optimal transport plan πρ and the map inducing it, called Tρ, which satisfy

Wp
p (ρ) = W p

p (ρ, ηρ) =

∫
|x− y|p dπρ(x, y) =

∫
|x− Tρ(x)|pρ(x) dx.

We point out that the objects ηρ, πρ and Tρ all depend implicitly on p. We do not stress that

dependence because we suppose p > 1 to be fixed in the whole paper.

One important result contains a geometric property of the optimal plan πρ. The proof of

the following lemma is purely metric, and concerns mostly the structure of ηρ, rather than
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the optimal transport problem that is hidden in Wp. Indeed, we do not exploit the c-cyclical

monotonicity of the optimal plans. This result is a natural generalization of [DPMSV16,

Lemma 5.1].

Lemma 2.6. Let (X, d) be a Polish metric space, and let γ ∈ M+(X) be a given measure. Let

ρ : X → [0, 1] be a Borel density. If π is an optimal plan to compute Wp(ρ) and (x, y) ∈ sptπ,

then

(p2)#π = (1− ρ)γ γ − a.e. in B|y−x|(x). (2.1)

Moreover, we have that (p2)#π ≥ min{1− ρ, ρ}γ.

Proof. We start proving that (p2)#π saturates the constraint in the ball, and the second

statement will follow easily. The idea is very simple: if π does not saturate the constraint

in that ball, then we can lower the energy of ρ adding some mass close to x. We define

r = |y− x|. Let us suppose by contradiction that there exist ε, δ > 0 and a set E ⊂ Br−4δ(x)

with γ(E) strictly positive and finite and such that

(1− ρ)γ − (p2)#π ≥ εγ in E.

We take µ1 = (p1)#(π Bδ(x) × Bδ(y)) and µ2 = εγ E, and we modify π in the following

way: we take 0 < t < min{1, µ1(X)/µ2(X)}, and we take

π̃ = π − t
µ2(X)

µ1(X)
π (Bδ(x)×Bδ(y)) +

t

µ1(X)
µ1 × µ2.

One can check that π̃ ∈ APρ thanks to our choice of t. Since π is an optimal plan to compute

Wp(ρ), we have that

0 ≤
∫

|x− y|p (dπ̃ − dπ) = −t
µ2(X)

µ1(X)

∫
Bδ(x)×Bδ(y)

|x− y|p dπ +
t

µ1(X)

∫
|x− y|p dµ1 dµ2

≤ −t
µ2(X)

µ1(X)
(r − 2δ)pµ1(X) +

t

µ1(X)
(r − 4δ + δ)pµ1(X)µ2(X)

= tµ2(X) [(r − 3δ)p − (r − 2δ)p] < 0,

and thus we reach a contradiction.

We now address the last inequality. Suppose by contradiction that the opposite inequality

holds in a set E ⊂ X with
∫
E ρdγ > 0. Then, thanks to what we have proved so far, we know

that the set

{x ∈ E : sptπ ∩ ({x} ×X) = (x, x)} (2.2)

has full γ-measure in E. In fact, if this was not the case, then we could find E′ ⊂ E with

γ(E′) > 0 and such that, for every x ∈ E′, there exists y ∈ X \ {x} such that (x, y) ∈ sptπ.

Then, using (2.1) we find an open covering of E′ where the contradiction hypothesis is not

satisfied, against the definition of E. Condition (2.2) means that we are not moving mass in

E, and thus

(p2)#(π (E ×X)) = (p1)#(π (E ×X)) = ρχ
E
γ.

This is sufficient to conclude since (p2)#π ≥ (p2)#(π (E×X)) = ρχ
E
γ, that is incompatible

with our contradiction hypothesis. □
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Corollary 2.7. Let us consider the functional Wp on the Euclidean space RN with the usual

metric and the Lebesgue measure L N . There exists a constant CN < +∞ such that, for any

ρ ∈ Am and for any (x, y) ∈ sptπρ, we have that

|x− y| ≤ CNm
1
N , (2.3)

where πρ is any optimal transport plan associated to ρ and ηρ. Therefore, we also have that

Wp
p (ρ) ≤ Cm1+ p

N .

Proof. This is a consequence of Lemma 2.6. In fact, if we fix r > 0 such that |Br| = 3m, then

for any ρ′ ∈ Am and for any z ∈ RN we have that∫
Br(z)

ρ+ ρ′ dx ≤ 2m.

Therefore, the condition (2.1) is not satisfied for any couple of points (x, y) ∈ sptπρ with

|x − y| > r. This is precisely the required estimate, since we bound the transport distance

with a quantity proportional to the radius of a ball with mass m. □

Remark 2.8. We report here the scaling property of the energy Wp, that is already stated

in [NTV23, Lemma 2.5] for sets. Let ρ be a density satisfying the constraint 0 ≤ ρ ≤ 1 and

let t > 0 be a given constant. If we consider ρ̃(x) = ρ(x/t), then we have that Wp
p (ρ̃) =

tp+NWp
p (ρ). In fact, it is sufficient to consider the density ηρ(·/t), rescaling appropriately the

transport map.

Lemma 2.9 (Continuity of Wp). Let ρ ∈ Am be a given density and let {ρn}n∈N ⊂ Am be a

sequence such that ρn
∗
⇀ ρ. Then, the limit of Wp(ρn) exists and Wp(ρ) = limnWp(ρn).

Proof. We prove this proposition in two steps. In the first step we establish that for any

p ≥ 1 (1.3) is the lower semicontinuous envelope of the functional in (1.1) in the class Am

with respect to the weak-∗ topology. As a consequence, Wp is lower semicontinuous in Am.

In the second step we obtain the upper semicontinuity of Wp in Am.

Step 1. Thanks to Remark 2.8 we can consider only the case m = 1. Let {En}n∈N be a

sequence of sets with |En| = 1 such that En
∗
⇀ ρ for some ρ ∈ A, and let us call ρn = χ

En
.

Since we preserve the total mass, we know that for any ε > 0 there exist R > 0 and k ∈ N
such that

∫
BR

ρn dx > 1− ε for every n > k. Using Corollary 2.7 we know that the transport

distance is uniformly bounded by a constant C, and thus
∫
BR+C

ηρn dx ≥ 1 − ε for any

n > k. Therefore, up to a subsequence, we have that also ηρn
∗
⇀ ρ′ for some density ρ′ with∫

ρ′ dx = 1. It is then easy to see that ρ+ ρ′ ≤ 1 almost everywhere, and thus

Wp(ρ) ≤ Wp(ρ, ρ
′) ≤ lim inf

n
Wp(ρn, ηρn) = Wp(ρn),

where we used the well-known lower semicontinuity of the Wasserstein distance (it is sufficient

to take the weak limit of the optimal transport plans). This proves that the functional in (1.3)

is smaller than the lower semicontinuous envelope of Wp with respect to the weak∗ topology.
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Next, we will find a sequence that realizes the equality, proving that our definition of Wp(ρ)

in A is the lower semicontinuous envelope of the functional defined in (1.1).

Given ρ ∈ A, for any n ∈ N we consider a partition of RN with a family of cubes Fn =

{Qk
n}k∈N with diameter 1/n. Thanks to the compatibility condition ρ+ ηρ ≤ 1, for any n we

can find two sets En and Fn with |En ∩ Fn| = 0 and such that

|En ∩Qk
n| =

∫
Qk

n

ρ dx, |Fn ∩Qk
n| =

∫
Qk

n

ηρ dx, ∀Qk
n ∈ Fn.

It is immediate to see that En
∗
⇀ ρ and Fn

∗
⇀ ηρ as n → +∞. Recalling m = 1, we also

note that Wp(En, ρ) ≤ diam(Qk
n) and Wp(ηρ, Fn) ≤ diam(Qk

n). To see this, it is sufficient to

consider the (non-optimal) transport plan given by

πn =
∑
k∈N

1

|En ∩Qk
n|
(χ

En∩Qk
n
L N )× (ρχ

Qk
n
L N ) ∈ P(RN × RN ), (2.4)

and notice that |x− y| ≤ diam(Qk
n) = 1/n for any (x, y) ∈ sptπn. The proof of the inequality

for Fn and ηρ is analogous, and thus we obtain that

Wp(En, Fn) ≤ Wp(En, ρ) +Wp(ρ, ηρ) +Wp(ηρ, Fn) ≤
2

n
+Wp(ρ, ηρ).

This, combined with the first part, shows that

Wp(ρ) = inf
En

∗
⇀ρ,|En|=m

lim inf
n

Wp(En) ∀ρ ∈ A.

Step 2. We remind that, thanks to Theorem 2.3, there exists an optimal transport map

for every transport problem that we consider in this paper. Up to taking a subsequence,

we can suppose that limnWp(ρn) exists, and we prove that Wp(ρ) = limnWp(ρn). Since

we can extract one of such subsequence from any subsequence of {ρn}n, this guarantees the
existence of that limit for the whole sequence. We proceed by contradiction, and we suppose

that there exists δ > 0 such that Wp(ρ) < limnWp(ρn) − δ. The idea is to modify ηρ and

produce a competitor to compute Wp(ρn), proving that we cannot have a strict inequality. To

proceed with this plan we first truncate the densities to guarantee a convergence in Wasserstein

distance. Up to taking another subsequence, we can suppose that ηρn
∗
⇀ ρ′ for some ρ′ ∈ A

with ρ+ρ′ ≤ 1 (using the same argument as in Step 1). Since the sequences {ρn}n and {ηρn}n
do not lose mass, for any ε < 1/2 there exists n̄, k1 ∈ N such that∫

RN\Q3k1

(ρn + ηρn) dx < ε ∀n > n̄. (2.5)

We will choose ε later on in order to make some approximations precise enough to obtain a

contradiction out of the strict inequality.

Now take k2 = ⌈3/ε⌉, so that k2ε ∈ [3, 3+ε], and we consider the cube Q̄ = [−k1k2ε, k1k2ε]
N .

It is easy to see that we can partition RN with a family F = {Qk}k∈N of cubes with side

length equal to ε and such that |Qk ∩ Q̄| ∈ {0, εN} (i.e. F contains two disjoint subfamilies

that partition Q̄ and RN \ Q̄). Moreover, it is also possible to find a partition of RN \ Q̄
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with a family F̃ = {Q̃k}k∈N of cubes with side length k2ε. We will use the first partition to

control the cost of an approximation of ηρ inside Q̄, where we move mass at short distance.

The second one, instead, will be used to estimate the energy carried by the mass outside of

that cube (thanks to (2.5), that mass is small). We call T the optimal transport map between

ρ and ηρ, and for any n we define the truncated densities ρ̃n = ρnχQ̄
. For any n we also

take Ln > 0 such that
∫
QLn

ρ dx =
∫
ρ̃n dx, and we define the densities ζn := ρχ

QLn
and

ζ ′n := (Tρ)#ζn. Since ρn
∗
⇀ ρ, then ρ̃n

∗
⇀ ρχ

Q̄
and we can choose the sequence {Ln}n to be

bounded. Moreover, we have that ζn
∗
⇀ ρχ

Q̄
. Since the supports of the truncated densities

are equibounded, then the pth-moment of ζn converges, as well as the pth-moment of ρ̃n, and

thus Wp(ρ̃n, ζn) → 0 (see e.g. [Vil03, Theorem 7.12])

We take h1n any non-negative density such that ρn + h1n ≤ 1 and for any k ∈ N∫
Qk

h1n dx = min

{∫
Qk

ζ ′n dx,

∫
Qk

1− ρn dx

}
.

Since ζ ′n = (Tρ)#ζn, we can apply Corollary 2.7 and see that spth1n is contained in QLn+C for

any n, where C is a constant depending only on N . Since ρ̃n
∗
⇀ ρχ

Q̄
and ζ ′n

∗
⇀ (Tρ)#(ρχQ̄

),

then we have that
∥∥h1n∥∥1 − ∥ζ ′n∥1 → 0 (notice that here only a finite number of cubes in F

play an active role). We choose any non-negative density h2n with spth2n ⊂ 3Q̄ and such that

ρn + h1n + h2n ≤ 1 and
∥∥h1n + h2n

∥∥
1
= ∥ρ̃n∥1 ,

and our candidate to compute Wp(ρ̃n) will be ρ̃′n := h1n + h2n. Observe that, by definition

of h1n and thanks to the properties of the pus-forward of measures, we have that
∥∥h1n∥∥1 ≤

∥ζ ′n∥1 = ∥ζn∥1 = ∥ρ̃n∥1. Thanks to the triangle inequality for the p-Wasserstein distance, we

have that

Wp(ρ̃n, ρ̃
′
n) ≤ Wp(ρ̃n, ζn) +Wp(ζn, ζ

′
n) +Wp(ζ

′
n, ρ̃

′
n).

The first term on the right hand side is going to 0 because, as we already noticed, the sets

sptρ̃n and sptζn are uniformly bounded and these densities are converging to ρχ
Q̄
. Hence,

up to taking n̄ large enough, we can suppose that Wp(ρ̃n, ζn) < ε. Likewise, the last term is

controlled by ε, and we use a plan similar to (2.4) to show this.

We choose a density ζ ′′n ≤ ζ ′n such that∫
Qk

ζ ′′n dx =

∫
Qk

h1n dx ∀k ∈ N,

and we consider the plan

π̃n =
∑
k∈N

1∥∥∥h1nχQk

∥∥∥
1

(ζ ′′nχQk
L N )× (h1nχQk

L N ) +
1

∥h2n∥1
((ζ ′n − ζ ′′n)L

N )× (h2nL N ),

where the sum is intended to run only on the indices for which h1nχQk
is not identically zero.

Using π̃n as test plan to compute Wp(ζ
′
n, ρ̃

′
n) we obtain the following upper bound:

W p
p (ζ

′
n, ρ̃

′
n) ≤

∫
|x− y|p dπ̃n(x, y) ≤ Cεp + diam(spth2n + ζ ′n)

(∥∥ζ ′n∥∥1 − ∥∥h1n∥∥1) ≤ Cεp,
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where we used that the mass of h1n remains inside the small cubes with side length ε, and the

remaining mass is transported at finite distance in any case (the constant C depends only on

N and p). The last inequality holds if we take n̄, and thus n, large enough, and if we adjust

the constant C. Adding up the various terms, we conclude that for any n > n̄ there is an

optimal transport plan πn for ρ̃n and ρ̃′n such that

Wp(ρ̃n, ρ̃
′
n) =

(∫
|x− y|p dπn(x, y)

) 1
p

≤ Wp(ζn, ζ
′
n) + Cε.

To conclude, we observe that the cubes in F̃ are so large that we can find a non-negative

density h3n such that ρn + ρ̃′n + h3n ≤ 1 and∫
Q̃k

h3n dx =

∫
Q̃k

ρn dx ∀k ∈ N.

Therefore, we consider the plan γn associated to ρn and ρ̃′n + h3n defined as

γn = πn +
∑
k∈N

1∥∥∥ρnχ
Q̃k

∥∥∥
1

(ρnχ
Q̃k

L N )× (h3nχQ̃k
L N ),

again summing only on the cubes with non-trivial measure. This gives the following estimate

for W p
p (ρn, ρ̃

′
n + h3n):

W p
p (ρn, ρ̃

′
n + h3n) ≤

(
Wp(ζn, ζ

′
n) + Cε

)p
+ C

∥∥h3n∥∥1
≤

(
Wp(ρ) + Cε

)p
+ C

∥∥h3n∥∥1
≤

(
Wp(ρn)− δ + Cε

)p
+ Cε.

Since δ > 0 is fixed and since the constant C in that estimate depends only on N and p,

we can find ε small enough so that W p
p (ρn, ρ̃

′
n + h3n) < Wp

p (ρn), and this is impossible since

ρ̃′n + h3n is a competitor in the definition of Wp(ρn). □

The next lemma describes particular symmetries of the problem (1.3) which are crucial in

proving properties of maximizers of Wp in the next section.

Lemma 2.10 (Symmetries of the transport problem). Let F : RN → RN be an isometry and

let ρ ∈ A be a given density such that F#(ρL
N ) = ρL N . Then the following hold:

(i) F#(ηρL
N ) = ηρL N and F̃#πρ = πρ, where F̃ is the map from RN × RN into itself

defined as F̃ (x, y) = (F (x), F (y)).

(ii) If F is a reflection of the form F (x) = x− 2⟨x, ν⟩ν for some ν ∈ SN−1, then we have

that

πρ ({(x, y) : ⟨x, ν⟩⟨y, ν⟩ < 0}) = 0. (2.6)

In other words, πρ does not transport mass from one side of the reflection hyperplane

{x : ⟨x, ν⟩ = 0} to the other.
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Proof. We recall that the optimal plan πρ is unique (see Theorem 2.3). Also, notice that

F#(ρL
N ) and F#(ηρL

N ) are absolutely continuous with respect to the Lebesgue measure,

and we have that F#(ρL
N ) = (ρ ◦ F )L N and F#(ηρL

N ) = (ηρ ◦ F )L N . Therefore, it is

trivial to see that F#(ρL
N ) ∈ A, F#(ηρL

N ) ∈ A and F#((ρ+ ηρ)L N ) ≤ L N .

It is easy to see that π̃ρ = (F̃ )#πρ is a transport plan associated to F#(ρL
N ) and

F#(ηρL
N ): by the properties of the push forward, we have that (p1 ◦ F̃ )#πρ = (p1)#(F̃#πρ),

and p1 ◦ F̃ = F ◦ p1, therefore (p1)#π̃ρ = F#(ρL
N ). An analogous property holds for the

second projection p2, and thus π̃ρ has the correct marginals. Then, we consider the plan

(πρ + π̃ρ)/2, whose marginals are ρL N and 1
2(ηρ + ηρ ◦ F )L N , and we observe that

Wp
p (ρ) ≤

1

2

∫
|x− y|p dπρ(x, y) +

1

2

∫
|x− y|p dF̃#πρ(x, y)

=
1

2

∫
|x− y|p dπρ(x, y) +

1

2

∫
|F (x)− F (y)|p dπρ(x, y) = W p

p (ρ, ηρ),

where we used that F is an isometry to obtain the last identity. This implies that ηρ ◦ F is

also an optimal density to compute Wp(ρ). Since there exists a unique density which realizes

Wp(ρ), then ηρL N = F#(ηρL
N ) and F̃#πρ = πρ.

In order to prove (ii), suppose that F (x) = x − 2⟨x, ν⟩ν for some ν ∈ SN−1. From the

previous point we know that πρ satisfies F̃#πρ = πρ. We want to prove that, whenever (2.6)

does not hold, we can find a better plan, contradicting the definition of πρ. In fact, we consider

the plan

π̃ρ = πρ (H1 ×H1) + πρ (H2 ×H2) + (Id, F )#(πρ (H1 ×H2)) + (Id, F )#(πρ (H2 ×H1)),

where H1 = {x : ⟨x, ν⟩ > 0} and H2 = F (H1) = {x : ⟨x, ν⟩ < 0}. We observe that, since

(p1)#πρ and (p2)#πρ are absolutely continuous with respect to Lebesgue measure, then πρ
does not give mass to ∂(Hi×Hj) for any i, j ∈ {1, 2}. Therefore, π̃ρ is a probability measure,

and the well-known properties of the push-forward operation guarantee that (p1)#π̃ρ = ρL N .

Since πρ = F̃#πρ and F̃ (H1 × H2) = H2 × H1, then πρ (H1 × H2) = F̃#(πρ (H2 × H1)).

With this observation we arrive to

((p2)#π̃ρ) H1 = (p2)# (πρ (H1 ×H1)) + (p2)# ((Id, F )#(πρ (H1 ×H2)))

= (p2)# (πρ (H1 ×H1)) + (p2)#

(
(Id, F )#F̃#(πρ (H2 ×H1))

)
= (p2)# (πρ (H1 ×H1)) + (p2)# ((F, Id)#(πρ (H2 ×H1)))

= (p2)# (πρ (H1 ×H1)) + (p2)# (πρ (H2 ×H1))

= (p2)#(πρ (RN ×H1)) = ((p2)#πρ) H1,

where we used that (Id, F ) ◦ F̃ = (F, Id) and the fact that F is an isometry to pass from the

second to the third line. Arguing in the same way, one can also see that ((p2)#π̃ρ) H2 =

((p2)#πρ) H2. This is sufficient to say that ρL N+(p2)#(π̃ρL
N ) ≤ L N , and thus π̃ρ ∈ APρ.

Now we can compare the costs associated to π̃ρ and πρ. Discarding the common terms, we
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get that∫
|x− y|p d(π̃ρ − πρ) =

∫
(H1×H2)∪(H2×H1)

(|x− F (y)|p − |x− y|p) dπρ(x, y), (2.7)

and a simple geometric argument shows that the function inside the integral is strictly nega-

tive. Therefore, if the domain appearing in the right hand side of (2.7) has positive πρ measure,

then π̃ρ is a strictly better competitor to compute Wp(ρ), in contradiction with the definition

of πρ. To conclude, we observe that we have just proved that πρ((H1×H2)∪ (H2×H1)) = 0,

and this is equivalent to (2.6). □

3. Maximizer of Wp

3.1. Existence of maximizers. In this section we first prove the existence of maximizers of

the energies (1.3) in A by applying the concentration compactness principle to a maximizing

sequence of densities, where we consider them as measures. Even though we consider a

maximization problem, our strategy works since Wp is continuous with respect to the weak∗
convergence, as shown in Lemma 2.9. Here we state concentration compactness lemma for

measures for the convenience of the reader.

Lemma 3.1 (Concentration compactness, [Str08]). Let µn ∈ P(RN ) be a given sequence of

probability measures. Then there exists a subsequence (not relabelled) such that one of the

following holds:

(i) (Compactness) There exists a sequence of points xn ∈ RN such that, for every ε > 0,

there exists L > 0 large enough such that µn(QL(xn)) > 1− ε.

(ii) (Vanishing) For every ε > 0 and every L > 0 there exists n̄ ∈ N such that

µn(QL(x)) < ε ∀x ∈ RN , ∀n > n̄.

(iii) (Dichotomy) There exist λ ∈ (0, 1) and a sequence of points xn ∈ RN with the

following property: for any ε > 0, there exists L > 0 such that, for any L′ > L there

exist two non-negative measures µ1
n and µ2

n that satisfy, for every n large enough, the

following conditions

µ1
n + µ2

n ≤ µn,

sptµ1
n ⊂ QL(xn), sptµ2

n ⊂ RN \QL′(xn),∣∣µ1
n(RN )− λ

∣∣+ ∣∣µ2
n(RN )− (1− λ)

∣∣ < ε.

Theorem 3.2. Let p > 1 be fixed. Then there exists a maximizer of Wp in A.

Proof. Let us consider a maximizing sequence ρn ∈ A with Wp(ρn) → supρ∈AWp(ρ). Notice

that, thanks to Corollary 2.7, we have that supρ∈AWp(ρ) ≤ C < +∞ for some constant

C = C(p,N). We are going to apply the concentration compactness lemma to µn = ρnL N ,

and show that the vanishing and dichotomy phenomena do not happen. Then exploiting the
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invariance of the energy under translations and Lemma 2.9 we establish the existence of a

maximizer.

We first exclude the vanishing case. Up to translations, we can suppose that the points xn
appearing in Lemma 3.1 all coincide with the origin. Suppose by contradiction that, for any

ε > 0 and any L > 0 we can find n̄ ∈ N such that µn(QL(x)) < (ε/3)N for every x ∈ RN .

Then, we fix a partition F = {Qk}k∈N of RN made of cubes with side length ε. Since by

hypothesis µn(Q
k) < |Qk|/3 for every n > n̄ and every k ∈ N, then for every n > n̄ there

exists ρ′n ∈ A such that ρn + ρ′n ≤ 1 and∫
Qk

ρn dx =

∫
Qk

ρ′n dx ∀k ∈ N.

Using a transport plan similar to πn defined in (2.4), it is immediate to see that

Wp
p (ρn) ≤ W p

p (ρn, ρ
′
n) ≤ diam(Qk)p = CN,pε

p.

If we take ε sufficiently small, we clearly have that ρn is not a maximizing sequence for Wp,

arriving to a contradiction.

Now we treat the dichotomy case. Suppose for a contradiction that there exists λ ∈ (0, 1)

such that, for any ε > 0 there exist n̄ ∈ N, L > 0 and two sequences of non-negative densities

ρ1n, ρ
2
n that satisfy

ρ1n + ρ2n ≤ ρn

sptρ1n ⊂ QL sptρ2n ⊂ RN \QL+3CN
,∣∣∣∣∫ ρ1n dx− λ

∣∣∣∣+ ∣∣∣∣∫ ρ2n dx− (1− λ)

∣∣∣∣ < ε,

(3.1)

where CN is the constant appearing in (2.3).

Since the distance between sptρ1n and sptρ2n is larger than 3CN , then applying Corollary 2.7

we obtain that Wp
p (ρ1n+ρ2n) = Wp

p (ρ1n)+Wp
p (ρ2n). Combining the first and the third conditions

in (3.1), we get that
∥∥ρn − ρ1n − ρ2n

∥∥
1
< ε, and we define m1

n =
∥∥ρ1n∥∥1 and m2

n =
∥∥ρ2n∥∥1. Using

this fact, and that ρ1n + ρ2n + ηρ1n+ρ2n
≤ 1, we deduce that∫

(ηρ1n+ρ2n
− (1− ρn))+ dx ≤ ε. (3.2)

We denote by Tn the optimal transport map to compute Wp(ρ
1
n + ρ2n), and we define

ζn = min{ηρ1n+ρ2n
, 1− ρn}, ρ̃n = (T−1

n )#ζn,

so that ρ̃n is an approximation of ρ1n+ρ2n, and it is smaller than that sum. We let F = {Qk}k∈N
be a partition of RN made of cubes with side length equal to 3, and we can find, as we did

before, a density ζ ′n such that ρn + ζn + ζ ′n ≤ 1 and∫
Qk

ζ ′n dx =

∫
Qk

ρn − ρ̃n dx ∀k ∈ N.
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Therefore, we estimate the energy of ρn with the plan

π̃n = (Id, Tn)#ρ̃n +
∑
k∈N

1∥∥∥ζ ′nχQk

∥∥∥
1

((ρn − ρ̃n)χ
Qk

L N )× (ζ ′nχQk
L N ).

In fact, combining (3.2) and the fact that
∥∥ρn − ρ1n − ρ2n

∥∥
1
≤ ε, we have that ∥ρn − ρ̃n∥1 ≤ 2ε,

and thus

Wp
p (ρn) ≤

∫
|x− y|p dπ̃n ≤

∫
|Tn(x)− x|pρ̃n(x) dx+ 2(diamQk)pε

≤ Wp
p (ρ

1
n + ρ2n) + CN,pε

= Wp
p (ρ

1
n) +Wp

p (ρ
2
n) + CN,pε

≤ sup
{
Wp

p (ρ) : ρ ∈ Am1
n

}
+ sup

{
Wp

p (ρ) : ρ ∈ Am2
n

}
+ CN,pε.

(3.3)

Using the rescaling exploited in Remark 2.8 we see that

sup
{
Wp

p (ρ) : ρ ∈ Am

}
= m1+ p

N sup
{
Wp

p (ρ) : ρ ∈ A
}
;

hence, (3.3) implies that

Wp
p (ρn) ≤ CN,pε+

(
(m1

n)
1+ p

N + (m2
n)

1+ p
N

)
sup

{
Wp

p (ρ) : ρ ∈ A
}
.

If ε is small enough, this is incompatible with the fact that limnWp(ρn) = supρ∈AWp(ρ). In

fact, the function t 7→ t1+
p
N is strictly convex, and if ε < 1

2 min{λ, 1 − λ}, then m1
n and m2

n

are far away from 0. □

3.2. The only maximizer is the ball. In the second part of this section we will characterize

the maximizers of Wp over A. In fact, we prove that the only maximizer of Wp is the

characteristic function of a ball (with the correct volume). The intuition behind this result

is that, if we have a set, and we create some holes in it (adding some mass somewhere else),

we are lowering the energy since the additional mass can be transported at shorter distance.

We obtain the main result in several steps: First we study the 1-dimensional case, possibly

with a weight, where the structure of the transport plan is known explicitly. Then, using a

symmetrization argument we show that the optimal plan associated to a maximizer has some

geometric properties, and, in fact, it is radial. Next, using the 1-dimensional case, we prove

that a maximizer has to be a star-shaped set, and via an optimality argument we deduce that

a star-shaped maximizer must actually be a ball.

Proposition 3.3. Let m > 0 be a given parameter. Let w : (0,+∞) → (0,+∞) be a non-

decreasing weight and let I = [0, ℓ] be the unique segment such that
∫
I w dx = m. For any

density ρ : R+ → [0, 1] with
∫
R+ ρw dx = m, we have that

Wp(χI
) ≥ Wp(ρ), (3.4)

where Wp is defined in the metric-measure setting with base space R+ endowed with the usual

distance and reference measure equal to wL 1. Moreover, the equality holds if and only if

ρ = χ
I
almost everywhere.
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Proof. We note that, also in this weighted case, the transport distance is bounded (using again

Lemma 2.6), and thus for any density the infimum in the definition of Wp is achieved thanks

to Theorem 2.3 and Theorem 2.5. Therefore, there exists ηρ such that Wp(ρ) = Wp(ργ, ηργ),

where we use the notation γ = wL 1. Moreover, since we have an increasing cost, we actually

have that Wp(χI
) = Wp(χI

γ,χ
I′γ), where I ′ = [ℓ, ℓ′] for some ℓ′ > ℓ, and the transport plan

is induced by a monotone map T (see Theorem 2.4).

Now we introduce an auxiliary problem that produces a non-optimal candidate to estimate

Wp(ρ). The advantage of this modified problem is that it enforces a “geometric” constraint

that clarifies some arguments. The auxiliary functional, which considers only plans which

move mass “forward”, is given by

AWp
p(ρ) := inf

{∫
|x− y|p dπ(x, y) : π ∈ APρ, π

(
{(x, y) : y < x}

)
= 0

}
.

We observe that the infimum is actually a minimum since the additional constraint is closed

under weak∗ convergence. Moreover, applying the standard results for the one dimensional

transport problem, we know that the optimal plan is induced by a non-decreasing map. Since

we have already observed thatWp(χI
) = Wp(χI

γ,χ
I′γ), then the monotonicity of the optimal

map ensures that Wp(χI
) = AWp(χI

). For a general density ρ, instead, we have just the

inequality AWp(ρ) ≥ Wp(ρ) due to the introduction of the additional constraint. With these

observations, we reduce to proving the following (stronger) inequality:

Wp(χI
) ≥ AWp(ρ),

and (3.4) simply follows.

From now on we denote by T̃ρ the transport map appearing when we compute AWp(ρ).

We define the following “volume” functions with domain R+:

V (x) :=

∫ x

0
w(t) dt, Vρ(x) :=

∫ x

0
ρ(t)w(t) dt.

We also denote by d(v) (resp. dρ(v)) the transport distance of the point V
−1(v) (resp. V −1

ρ (v))

when we compute Wp(χI
) (resp. Wp(ρ)), i.e.

d(v) := |T (V −1(v))− V −1(v)|, dρ(v) := |T̃ρ(V
−1
ρ (v))− V −1

ρ (v)|.

Using the explicit expression of the optimal transport map in 1D (see for example [Vil03,

Remarks 2.19 (iv)]), we have that

γ([V −1(v), V −1(v) + d(v)]) = m ∀v ∈ [0,m].

One can easily adapt the proof of Lemma 2.6 to the auxiliary functional and see that, if x is a

Lebesgue point for T̃ρ and r = |T̃ρ(x)− x|, then (T̃ρ)#(ργ) = (1− ρ)γ in [x, x+ r]. Moreover,

since T̃ρ is non-decreasing, we also have that

(T̃ρ)# (ργ [0, x]) = (1− ρ)γ in [x, x+ r]. (3.5)
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We claim that dρ ≤ d. In fact, suppose for a contradiction that there exists v ∈ (0,m) such

that dρ(v) > d(v). Since ρ ≤ 1, then V −1 ≤ V −1
ρ , and thus∫ V −1

ρ (v)+dρ(v)

0
ρ(t)w(t) dt ≥

∫ V −1
ρ (v)+dρ(v)

V −1
ρ (v)

w(t) dt ≥
∫ V −1(v)+dρ(v)

V −1(v)
w(t) dt

>

∫ V −1(v)+d(v)

V −1(v)
w(t) dt = γ([V −1(v), V −1(v) + d(v)]) = m,

where we used (3.5) applied to x = V −1
ρ (v) and r = dρ(v) to get the first inequality, and the

monotonicity of w to obtain the second one. This chain of inequalities of course leads to a

contradiction since m =
∫
ρ dγ. Therefore dρ ≤ d.

Since w and ρw are locally bounded in [0,+∞), then both V and Vρ are locally Lipschitz,

and we can apply the fundamental theorem of calculus: using v = Vρ(x) as variable in the

computation of AWp(ρ) we obtain that

AWp
p(ρ) =

∫
R+

|T̃ρ(x)− x|pρ(x)w(x) dx =

∫ m

0
dρ(v)

p dv ≤
∫ m

0
d(v)p dv = Wp

p (χI
),

where the inequality follows from comparison between d and dρ, and this is the desired

inequality. Finally, one can notice that the only way to obtain an equality in the previous

chain of inequalities is that ρ = χ
I′′ for some segment I ′′ and w is constant in spt(ρ+ T#ρ).

However, if I ′′ ̸= I, then one can construct a better transport plan moving some mass to

the left (this plan should belong to APρ, but it is not admissible for the auxiliary problem).

Therefore, the equality in (3.4) holds only for ρ = χ
I
. □

Lemma 3.4. Let p > 1 be given, and let ρ ∈ A be a maximizer of Wp. If ν ∈ SN−1 is such

that ∫
{x : ⟨x,ν⟩>0}

ρ dx =

∫
{x : ⟨x,ν⟩<0}

ρ dx =
1

2
, (3.6)

then the optimal plan πρ satisfies

πρ({(x, y) : ⟨x, ν⟩ · ⟨y, ν⟩ < 0}) = 0. (3.7)

Proof. The idea is to consider an auxiliary functional, as in the proof of Proposition 3.3, and

show that it coincides with Wp when evaluated at ρ (due to the maximality of this density).

This ensures that πρ has some additional structure due to the uniqueness of the optimal plan.

We define the auxiliary functional

AWp
p(ρ, ν) := inf

{∫
|x− y|p dπ(x, y) : π ∈ APρ, π({(x, y) : ⟨x, ν⟩ · ⟨y, ν⟩ < 0}) = 0

}
.

Loosely speaking, this auxiliary functional uses only plans that do not transport mass across

the hyperplane {x : ⟨x, ν⟩ = 0}. As before, we are introducing an additional constraint that

is closed under weak∗ convergence, and thus there exists an optimal plan in the definition

of AWp(ρ, ν). Clearly, since we are introducing a constraint in the minimization process, we

have that Wp(ρ) ≤ AWp(ρ, ν).
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Let F (x) = x − 2⟨x, ν⟩ν be the reflection map, and define the two symmetrizations of ρ

with respect to ν:

ρ1 = ρ H1 + F#(ρ H1), ρ2 = ρ H2 + F#(ρ H2),

where H1 = {x : ⟨x, ν⟩ > 0} and H2 = F (H1) = {x : ⟨x, ν⟩ < 0}. We denote by π̄1 and π̄2 the

two optimal plans realizing AWp(ρ1, ν) and AWp(ρ2, ν), respectively. We claim that

π̄ = π̄1 (H1 ×H1) + π̄2 (H2 ×H2)

realizes AWp(ρ, ν). In fact, π̄ is admissible to compute AWp(ρ, ν), and if we find a better

candidate π to compute AWp(ρ, ν), then we can also construct the following plans that are

good candidates to compute AWp(ρ1, ν) and AWp(ρ2, ν) respectively:

π1 = π (H1 ×H1) + F̃#(π (H1 ×H1)), π2 = π (H2 ×H2) + F̃#(π (H2 ×H2)),

where F̃ (x, y) = (F (x), F (y)). Then we observe that

AWp
p(ρ1, ν) =

∫
|x− y|p dπ̄1 = 2

∫
H1×H1

|x− y|p dπ̄1,

AWp
p(ρ2, ν) =

∫
|x− y|p dπ̄2 = 2

∫
H2×H2

|x− y|p dπ̄2,∫
|x− y|p dπ̄ =

1

2

(
AWp

p(ρ1, ν) +AWp
p(ρ2, ν)

)
,∫

|x− y|p dπ =
1

2

(∫
|x− y|p dπ1 +

∫
|x− y|p dπ2

)
.

If AWp
p(ρ, ν) <

∫
|x− y|p dπ̄, then at least one between π1 and π2 is a better competitor for

AWp(ρ1, ν) or AWp(ρ2, ν), contradicting the definition of π̄1 and π̄2. Therefore, the following

conditions hold:

Wp
p (ρ) ≤ AWp

p(ρ, ν) =
1

2

(
AWp

p(ρ1, ν) +AWp
p(ρ2, ν)

)
=

1

2

(
Wp

p (ρ1) +Wp
p (ρ2)

)
, (3.8)

where we used the second part of Lemma 2.10 to obtain the last equality. Since ρ is a

maximizer, then (3.8) guarantees that ρ1 and ρ2 are also maximizers. This, however, implies

that Wp(ρ) = AWp(ρ, ν). In other words, π̄ realizes Wp(ρ) and satisfies (3.7). Therefore,

necessarily, we have that πρ = π̄, concluding the proof. □

Corollary 3.5. Let p > 1 be given, and let ρ ∈ A be a maximizer of Wp. Then there exists

x0 ∈ RN such that πρ has the following property:

πρ ({(x, y) : ⟨y − x0, x− x0⟩ ≠ |y − x0||x− x0|}) = 0. (3.9)

That is, πρ is radial with center x0.

Proof. By sliding each hyperplane {x : ⟨x, ei⟩ = 0} until it splits the mass of ρ in half, and by

taking the intersection of the N hyperplanes, we find a point x0 ∈ RN such that∫
{x : ⟨x−x0,ei⟩>0}

ρ dx =

∫
{x : ⟨x−x0,ei⟩<0}

ρ dx =
1

2
∀i ∈ {1, . . . , N}.



18 ALMUT BURCHARD, DAVIDE CARAZZATO, AND IHSAN TOPALOGLU

Up to translations, we suppose that x0 = 0. By (3.8) we know that suitable symmetrizations

of ρ with respect to the coordinate axes are again maximizers. Iterating this procedure, we

obtain a maximizer ρ̃ taking successive reflections of the sector

ρ {x : ⟨x, ei⟩ > 0 ∀i = 1, . . . , N}, (3.10)

and the result is a density symmetric with respect to each coordinate direction. The symme-

tries of ρ̃ guarantee that∫
{x : ⟨x,ν⟩>0}

ρ̃ dx =

∫
{x : ⟨x,ν⟩<0}

ρ̃ dx =
1

2
∀ν ∈ SN−1.

Hence, applying Lemma 3.4 to ρ̃ we obtain that πρ̃ satisfies the splitting condition (3.7) for

any vector ν. Thus, the condition (3.9) holds for πρ̃. We finally conclude by uniqueness of the

optimal plan, as we did in the last part of Lemma 3.4: we can use the same strategy starting

from a different sector in (3.10), defining a different symmetric density ρ̃. The same conclusion

holds for the new optimal plan associated to that density, namely πρ̃. By uniqueness of the

optimal plan, we know that πρ can be obtained gluing together the plans of each sector, and

thus also πρ satisfies (3.9). □

Now we can state and prove our main result.

Theorem 3.6. Let p > 1 be given. Then the only maximizer of Wp in the class A, up to

translations, is the characteristic function of B with |B| = 1.

Proof. We prove this result in two steps: in the first one we prove that any maximizer must be

the characteristic function of a star-shaped set, while in the second one we exploit the inner-

ball condition exposed in Lemma 2.6 to see that the length of the rays must be constant.

Without loss of generality, we can suppose N ≥ 2 since the 1-dimensional case has already

been treated in Proposition 3.3.

Step 1. First we will apply Corollary 3.5 and decompose the transport along rays. Then,

exploit the one dimensional result obtained in Proposition 3.3 to prove that, along the rays,

we see only segments, and this is equivalent to saying that the maximizer is a star-shaped set.

Let ρ be any maximizer of Wp in A. We apply Corollary 3.5 to ρ, and we can suppose,

without loss of generality, that the point x0 coincides with the origin. Therefore, the optimal

plan πρ is induced by a radial map Tρ. Since in this proof we do not need to stress the

dependence of ηρ, πρ and Tρ on the density ρ, we simplify the notation, and we denote those

objects by η, π and T , respectively. We decompose every function in radial coordinates, and

let w(r) = rN−1 denote the coarea factor when we integrate in polar coordinates. For any

ω ∈ SN−1 we define the functions

ρω(r) = ρ(rω), ηω(r) = η(rω), Tω(r) = |T (rω)|

for every r ∈ [0,+∞). We consider them as functions defined (almost everywhere) on the

metric-measure space (X, d, γ), where X = R+, γ = wL 1 and d is the usual distance.
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We claim that, since T (rω) = Tω(r)ω and T#ρ = η, we have

(Tω)# (ρωγ) = ηωγ for a.e. ω ∈ SN−1. (3.11)

For any s > 0 and any E ⊂ SN−1 we define the set F = {rω : 0 ≤ r ≤ s, ω ∈ E} and we have

that ∫
E
dH N−1

ω

∫ s

0
ηω dγ =

∫
E
dH N−1

ω

∫ s

0
η(rω)rN−1 dr =

∫
F
η(x) dx

=

∫
F
(T#ρ)(x) dx =

∫
T−1(F )

ρ(x) dx

=

∫
E
dH N−1

ω

∫
(Tω)−1([0,s])

ρ(rω)rN−1 dr

=

∫
E
dH N−1

ω

∫
(Tω)−1([0,s])

ρω(r) dγ

=

∫
E
dH N−1

ω

∫ s

0
(Tω)#ρ

ω dγ.

Here we used that T is radial to pass from the second to the third line, in combination with

the integration in polar coordinates. Since E and s are arbitrary, this proves (3.11).

We obtain the result of this first step by applying Proposition 3.3 separately for any ω ∈
SN−1. In fact, we can integrate in polar coordinates the transport cost and obtain that∫

|T (x)− x|pρ(x) dx =

∫
SN−1

∫ +∞

0
|T (rω)− rω|pρ(rω)rN−1 dr dω

=

∫
SN−1

(∫ +∞

0
|Tω(r)− r|pρω(r)w(r) dr

)
dω.

The inner integral in the last expression coincides with the transport cost of Tω between ρωγ

and ηωγ, and since T is the optimal transport map between ρ and η, then also Tω must be

optimal between ρωγ and ηωγ for every ω ∈ SN−1. This is properly justified by showing that

gluing the optimizers ω-by-ω we obtain a measurable density. We sketch the proof of this fact

in Appendix A. Therefore, if we denote by m(ω) =
∫
R+ ρω dγ, then

Wp
p (ρ) =

∫
SN−1

Wp
p (ρ

ω) dω

≤
∫
SN−1

sup

{
Wp

p (θ) : θ : X → [0, 1],

∫
X
θ dγ = m(ω)

}
dω, (3.12)

where we use the metric-measure definition of Wp in those integrals (see Remark 1.1). By

Proposition 3.3, for every ω ∈ SN−1, the supremum inside the last integral coincides with

Wp
p (χIω

), where Iω ⊂ X is the unique segment of the form [0, ℓω] with γ(Iω) = m(ω).

Moreover, the inequality is strict whenever ρω is not equivalent to χ
Iω
. Since the map

ω 7→ m(ω) is measurable, we can glue the segments Iω together and obtain another candidate

to compute Wp. The density ρ is a maximizer; hence, for almost every ω ∈ SN−1 the density

ρω must be equivalent to χ
Iω
, concluding the proof of the first step.
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O

ℓ
ω
ω

T (ℓωω)

ℓ
ν
ν

T (ℓνν)

Figure 1. In this figure we depict two points ℓωω and ℓνν that belong to

the support of ρ, and their images through the map T , which coincide with

Tω(ℓω)ω and T ν(ℓν)ν respectively. The inner ball condition implies that the

two image points have to lie outside of the circles depicted, whose radii coincide

with the transport distances Tω(ℓω)− ℓω and T ν(ℓν)− ℓν respectively.

Step 2. For any ω ∈ SN−1 we know that T (ℓωω) = (Tω(ℓω))ω, and Lemma 2.6 guarantees

that η(x) = 1− ρ(x) for every x ∈ RN such that |x− ℓωω| ≤ Tω(ℓω)− ℓω. Let ν ∈ SN−1 be

another unit vector. Note that Tω(ℓω) = 21/Nℓω (see e.g. [CTG22] where the transport map

in the case of a ball is given explicitly). Thanks to the inner ball condition, we obtain that

T ν(ℓν) is larger than t for any t > 0 such that |tν − ℓωω| ≤ Tω(ℓω)− ℓω.

In order to simplify the notation we define c = 21/N , r = ℓω and s = ℓν . Taking the square

of both sides of the inner-ball inequality (see Figure 1 for a geometric intuition of the inner

ball condition in this situation), we get that s ≥ t for every t > 0 satisfying

c2t2 − 2c⟨ν, ω⟩rt+ c(2− c)r2 = 0.

Solving the above equation in t one gets that

s ≥
⟨ν, ω⟩+

√
⟨ν, ω⟩2 − c(2− c)

c
r .

By the definition of c, the expression under the square root is non-negative whenever ⟨ν, ω⟩
is close enough to 1 since c > 1 and 1− c(2− c) = (c− 1)2 > 0. Swapping the roles of ν and

ω we also arrive to the analogous inequality

r ≥
⟨ν, ω⟩+

√
⟨ν, ω⟩2 − c(2− c)

c
s .
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Combining these two inequalities we can control the difference between s and r in terms

of the distance between ν and ω:

s− r ≥ r

c

(
⟨ν, ω⟩ − c+

√
⟨ν, ω⟩2 − c(2− c)

)
=

2r(1− ⟨ν, ω⟩)
⟨ν, ω⟩ − c−

√
⟨ν, ω⟩2 − c(2− c)

,

s− r ≤ s

c

(
c− ⟨ν, ω⟩ −

√
⟨ν, ω⟩2 − c(2− c)

)
=

2s(1− ⟨ν, ω⟩)
c− ⟨ν, ω⟩+

√
⟨ν, ω⟩2 + c(2− c)

.

By Corollary 2.7 we have that |T (x)− x| ≤ CN for a dimensional constant CN ; hence, r and

s are also uniformly bounded. Since 2(1 − ⟨ν, ω⟩) = |ν − ω|2, we can combine the previous

estimates and obtain that

|ℓν − ℓω| ≤ C̃N |ν − ω|2

for any ν and ω sufficiently close. This implies that the map ω 7→ ℓω is 2-Hölder continuous

on the sphere, hence it is constant. This is equivalent to showing that the only maximizer is

the ball, and thus the proof is concluded. □

4. Quantitative inequality in one dimension

In this section we prove a quantitative inequality for Wp in one dimension, so we manage to

strengthen the result obtained in Section 3 adding a term that measures the displacement of a

density ρ respect to the characteristic function of a ball. In order to measure that distance, we

consider a version of the Frankel asymmetry that, loosely speaking, is the L1 distance between

a density and a ball. This choice is by no means new: for example, the asymmetry was used

in the quantitative isoperimetric inequality (cfr. [FMP08, FMP10]) and in the quantitative

Brunn-Minkowski inequality (cfr. [BJ17]). See also [FP20,FL21] for a quantitative inequality

involving a functional of Riesz type.

Definition 4.1. We define the following quantity, that we will just call asymmetry in the

sequel:

A(ρ) := inf
{∥∥∥ρ− χ

Br(x)

∥∥∥
1
: x ∈ RN , |Br(x)| = 1

}
∀ρ ∈ A.

With this notion, our quantitative inequality reads as the following.

Theorem 4.2. For N = 1 and p > 1 fixed, there exists a constant Cp > 0 such that

Wp
p (B)−Wp

p (ρ) ≥ CpA(ρ)
2 for all ρ ∈ A.

Remark 4.3. We point out that the exponent 2 in our quantitative inequality is sharp, in

the sense that the inequality would be false with a smaller exponent for densities with small

asymmetry. This can be seen by taking ρ = χ
[−1/2−ε,−1/2]

+ χ
[−1/2+ε,1/2−ε]

+ χ
[1/2,1/2+ε]

for ε

small.
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Proof. By definition of asymmetry, A(ρ) ≤ 2 for every ρ ∈ A, and without loss of generality

we can suppose that A(ρ) > 0. Up to translations, we can suppose that∫ 0

−∞
ρ dx =

∫ +∞

0
ρ dx =

1

2
.

As we showed in Proposition 3.3, it is possible to find a transport plan π̄ ∈ APρ such that

|x − y| ≤ 1/2 for any (x, y) ∈ sptπ̄. Loosely speaking, that transport plan moves mass

“away from the origin”. Now we want to get a quantitative inequality modifying π̄ and

finding another plan π ∈ APρ for which the transport distance is again controlled by 1/2, and

moreover

π ({(x, y) : |x− y| ≤ d}) ≥ A(ρ)

100
, where d :=

1

2
− A(ρ)

100
. (4.1)

With this competitor, if E =
{
(x, y) ∈ RN × RN : |x− y| ≤ d

}
is the set considered in the

previous inequality, we have that

Wp
p (ρ) ≤

∫
|x− y|p dπ(x, y) ≤ dpπ(E) +

1

2p
(1− π(E))

=
1

2p
+

π(E)

2p

[(
1− A(ρ)

50

)p

− 1

]
≤ 1

2p
+

π(E)

2p
(−CpA(ρ))

= Wp
p (B)− CpA(ρ)2,

where Cp is a constant depending only on p. Therefore, we need to find such a plan π to

complete the proof. We denote by T̄ the map that induces π̄. Let us look at the set {x ≥ 0},
and we define xR as the smallest point that is moved at distance d, i.e. xR := inf{x >

0: T̄ (x) − x > d}. Exploiting the same arguments of Proposition 3.3, it can be shown that

T̄#(ρ [0, xR]) = 1 − ρ in [xR, xR + d], and thus
∫ xR

0 ρ dx +
∫ xR+d
xR

ρ dx ≥ d. Now we explore

the different cases that may appear.

Case 1 . If we have that
∫ xR

0 ρ dx ≥ A(ρ)
100 , then the plan π̄ already satisfies (4.1) and there is

nothing to do.

Case 2 . Let us suppose that both of the following conditions hold∫ xR

0
ρ dx <

A(ρ)

100
,

∫ xR

0
(1− ρ) dx >

A(ρ)

100
.

In this case, we take a point x1R > xR such that
∫ x1

R
0 ρ dx = A(ρ)

100 , and we try to move mass in

the opposite direction in the segment [0, x1R]. This is necessary in order to take into account

densities similar to the characteristic function of the union of two intervals: in that case, the

optimal map actually moves mass toward the origin (see Figure 2).

To do this, we consider a transport plan tailored to ρ and depending on x1R, and it is

obtained again through a minimization process:

min

{∫
|x− y|p dπ(x, y) : π ∈ APρ, sptπ ⊂ D

}
, (4.2)
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O a a+
1

2
−a

−a−

1

2

Figure 2. Denoting by ρ = χ
[−a−1/2,−a]∪[a,a+1/2]

for some a > 0, we represent

in this picture the matching induced by a plan realizing every Wp(ρ). In fact, if

x ∈ sptρ has a given color, it will be mapped to a point with the corresponding

dashed color.

where D ⊂ R× R is the following domain:

D := {(x, y) : x ̸∈ (0, x1R), x · (y − x) ≥ 0} ∪
(
[0, x1R]× [0, x1R]

)
.

Observe that, since
∫ x1

R
0 ρ dx = A(ρ)

100 <
∫ x1

R
0 (1−ρ) dx, then it is possible to find a minimizer π of

(4.2). Applying again the structure theorem for optimal plans in one dimension, we find a map

T that induces an optimal plan. This transport problem is actually decoupled, considering

independently ρ [0, x1R] and ρ−(ρ [0, x1R]). Hence, it is possible to adapt [DPMSV16, Lemma

5.1] separately to both pieces and see that |T (x)−x| ≤ d for every x ∈ [0, x1R]. In fact, if this

is not the case, then T#ρ = 1− ρ in a segment I ⊂ [0, x1R] longer than d. This is impossible

since

d ≤ |I| =
∫
I
(ρ+ (1− ρ)) dx =

∫
I
(ρ+ T#ρ) dx ≤ 2

∫ x1
R

0
ρ dx = 2 · A(ρ)

100
≤ 1

25
,

and d = 1
2 −

A(ρ)
100 > 1

3 . Having this uniform bound on the transport length in [0, x1R], then we

see that π satisfies (4.1) because
∫ x1

R
0 ρ dx = A(ρ)

100 .

Case 3 . Finally, let us suppose that the following inequalities hold at the same time:∫ xR

0
ρ dx <

A(ρ)

100
,

∫ xR

0
(1− ρ) dx ≤ A(ρ)

100
.

At this point, we can explore each of the previous cases on the left side of the real line,

producing the analogous xL = sup
{
x < 0: x− T̄ (x) > d

}
. Since in the first two cases we

managed to construct the desired π, we can suppose without loss of generality that we are in

Case 3 also on the left side. In other words, the following holds

max

{∫ xR

0
ρ dx,

∫ xR

0
(1− ρ) dx,

∫ 0

xL

ρ dx,

∫ 0

xL

(1− ρ) dx

}
≤ A(ρ)

100
.

Combining these information we obtain an estimate on |xR − xL|:

xR − xL =

∫ 0

xL

(ρ+ (1− ρ)) dx+

∫ xR

0
(ρ+ (1− ρ)) dx ≤ A(ρ)

25
,

and we will see that this is not possible because we can get an inequality for the asymmetry

of ρ. We repeat here the argument of Proposition 3.3: adapting [DPMSV16, Lemma 5.1] we
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obtain that T̄#(ρ [xL, 0]) = 1− ρ in [xL − d, xL] and T̄#(ρ [0, xR]) = 1− ρ in [xR, xR + d],

and thus∫ xR+d

xL−d
ρ dx =

∫ xL

xL−d
ρ dx+

∫ 0

xL

ρ dx+

∫ xR

0
ρ dx+

∫ xR+d

xR

ρ dx

≥
∫ xL

xL−d
ρ dx+

∫ xL

xL−d
T̄#ρ dx+

∫ xR+d

xR

T̄#ρ dx+

∫ xR+d

xR

ρ dx = 2d.

This means that
∫ xR+d
xL−d ρ ≥ 1− A(ρ)

50 . If xR+d−(xL−d) ≤ 1, then by definition of asymmetry

A(ρ) ≤ 2

∫ xL−d

−∞
ρ dx+ 2

∫ +∞

xR+d
ρ dx ≤ A(ρ)

25
,

that is impossible. Hence, we know that xL − d + 1 < xR + d. Since we proved that

xR − xL ≤ A(ρ)
25 , we obtain an inequality always valid in our case: xR + d − (xL − d) =

1− A(ρ)
50 + xR − xL ≤ 1 + A(ρ)

50 . Therefore, we have that

A(ρ) ≤ 2

∫ xL−d+1

xL−d
(1− ρ) dx ≤ 2

∫ xR+d

xL−d
(1− ρ) dx ≤ 2(xR − xL + 2d)− 2

(
1− A(ρ)

50

)
≤ 2 +

A(ρ)

25
− 2 +

A(ρ)

25
=

2

25
A(ρ),

and thus we reach a contradiction, concluding the last remaining case. □

Appendix A. Sketch of the measurability of the construction in Theorem 3.6

In Theorem 3.6 we needed to check that the density

(r, ω) 7→ ζ̄ω(r)

is measurable, where ζ̄ω satisfies Wp(ρ
ω) = Wp(ρ

ω, ζ̄ω). This is necessary to have the rep-

resentation in (3.12). To do that, we approximate ρ in L1 with densities ρk ∈ A that are

piecewise constant along the sphere. In other words, for every k there exists a partition of the

sphere SN−1 =
⋃

j E
k
j with sets such that diam(Ek

j ) + |Ek
j | ≤ 1/k, and such that for every j

ρk(rω) = ρk(rω
′) ∀ω, ω′ ∈ Ek

j .

We construct the following densities: for every k and every ω ∈ SN−1 we take ζ such that

Wp(ρ
ω
k ) = Wp(ρ

ω
k , ζ) (in the metric-measure sense), and we define

ζk(r, ω) = ζ(r).

In other words, ζωk is the optimal density to compute Wp(ρ
ω
k ). This density is measurable

since it is piecewise constant along the sphere. Since ρk → ρ in L1, then ρωk → ρω in L1 for

a.e. ω ∈ SN−1. For this reason, we say that ζωk → ζ̄ω in weak∗ sense for a.e. ω.
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To see this, notice that ζωk converges to some density ϕω because the sequence ρωk is bounded

in L∞, and the transport distance is bounded when the mass of ρωk is finite, that happens for

a.e. ω. By lower semicontinuity of the transport distance we have that

Wp(ρ
ω) = Wp(ρ

ω, ζ̄ω) ≤ Wp(ρ
ω, ϕω) ≤ lim inf

k
Wp(ρ

ω
k , ζ

ω
k ) = Wp(ρ

ω),

where we used that ρω +ϕω ≤ 1 in the first inequality, and the continuity of Wp with respect

the weak∗ convergence in the last equality. Since the optimal density to compute Wp(ρ
ω) is

unique, then ζ̄ω = ϕω = limk ζ
ω
k .

We finally conclude because ζk → ζ∞ for some ζ∞ in weak∗ sense, and ζ∞ is therefore

measurable. Moreover, a little argument shows that, whenever fk : X × Y → R converges in

weak∗ sense to f (X and Y being reasonable spaces, in our case X = R+ and Y = SN−1),

then for almost every y ∈ Y we have that

fk (X × {y}) ∗
⇀ f (X × {y}).

Hence, for almost every ω ∈ SN−1 we have that

ζωk
∗
⇀ ζω∞,

and our previous argument shows also that

ζωk
∗
⇀ ζ̄ω for a.e. ω ∈ SN−1.

Combining these facts, we get that ζ̄ = ζ∞ almost everywhere, and thus ζ̄ is measurable, as

we wanted.
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